NEONATAL SEIZURE DETECTION USING BLIND MULTICHANNEL INFORMATION FUSION

被引:0
|
作者
Li, Huaying [1 ]
Jeremic, Aleksandar [1 ]
机构
[1] McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON, Canada
来源
2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING | 2011年
关键词
neonatal seizure detection; biomedical signal processing; EEG;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Seizure is the result of excessive electrical discharges of neurons, which usually develops synchronously and happens suddenly in the central nervous system. Clinically, it is difficult for physician to identify neonatal seizures visually, while EEG seizures can be recognized by the trained experts. By extending our previous results on multichannel information fusion, we propose an automated distributed detection system consisting of the existing detectors and a fusion center to detect the seizure activities in the newborn EEG. The advantage of this proposed technique is that it does not require any priori knowledge of the hypotheses and the detector performances, which are often unknown in real applications. Therefore, this proposed technique has the potential to improve the performances of the existing neonatal seizure detectors.
引用
收藏
页码:649 / 652
页数:4
相关论文
共 50 条
  • [1] NEONATAL SEIZURE DETECTION USING BLIND ADAPTIVE FUSION
    Li, Huaying
    Jeremic, Aleksandar
    BIOSIGNALS 2011, 2011, : 365 - 371
  • [2] NEONATAL SEIZURE DETECTION USING BLIND DISTRIBUTED DETECTION WITH CORRELATED DECISIONS
    Li, Huaying
    Jeremic, Aleksandar
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 6580 - 6584
  • [3] NEONATAL SEIZURE DETECTION AND LOCALIZATION USING TIME-FREQUENCY ANALYSIS OF MULTICHANNEL EEG
    Khlif, M. S.
    Mesbah, M.
    Boashash, B.
    Colditz, P.
    ICSPC: 2007 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS, VOLS 1-3, PROCEEDINGS, 2007, : 1567 - 1570
  • [4] Neonatal seizure detection using deep belief networks from multichannel EEG data
    Visalini, K.
    Alagarsamy, Saravanan
    Nagarajan, D.
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (14) : 10637 - 10647
  • [5] Neonatal seizure detection using deep belief networks from multichannel EEG data
    K. Visalini
    Saravanan Alagarsamy
    D. Nagarajan
    Neural Computing and Applications, 2023, 35 : 10637 - 10647
  • [6] Enhanced Epileptic Seizure Detection Based on Information Fusion Techniques
    Pedram, Raha
    Farzanehkari, Pooyan
    Heydarloo, Milad Moradi
    Chaibakhsh, Ali
    Kordestani, Mojtaba
    Saif, Mehrdad
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, INTELLISYS 2024, 2024, 1066 : 713 - 725
  • [7] NEONATAL SEIZURE DETECTION USING CONVOLUTIONAL NEURAL NETWORKS
    O'Shea, Alison
    Lightbody, Gordon
    Boylan, Geraldine
    Temko, Andriy
    2017 IEEE 27TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2017,
  • [8] Seizure Detection Using the Phase-Slope Index and Multichannel ECoG
    Rana, Puneet
    Lipor, John
    Lee, Hyong
    van Drongelen, Wim
    Kohrman, Michael H.
    Van Veen, Barry
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (04) : 1125 - 1134
  • [9] Clinical implementation of a neonatal seizure detection algorithm
    Temko, Andriy
    Marnane, William
    Boylan, Geraldine
    Lightbody, Gordon
    DECISION SUPPORT SYSTEMS, 2015, 70 : 86 - 96
  • [10] Neonatal Seizure Detection Using Deep Convolutional Neural Networks
    Ansari, Amir H.
    Cherian, Perumpillichira J.
    Caicedo, Alexander
    Naulaers, Gunnar
    De Vos, Maarten
    Van Huffel, Sabine
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2019, 29 (04)