THERMAL SENSATION DISPLAY WITH CONTROLLABLE THERMAL CONDUCTIVITY

被引:0
|
作者
Hirai, Seiya [1 ]
Miki, Norihisa [1 ]
机构
[1] Keio Univ, Tokyo, Japan
来源
2019 20TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS & EUROSENSORS XXXIII (TRANSDUCERS & EUROSENSORS XXXIII) | 2019年
关键词
Tactile display; Thermal sensation; Thermal conductivity; Effective thermal conductivity; Liquid metal;
D O I
10.1109/transducers.2019.8808369
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate a thermal sensation display that can present various thermal sensation by varying the thermal conductivity of the display. Thermal sensation, i.e. cold/cool/warm/hot, is one of the major tactile sensations and needs to be further investigated to advanced VRiAR systems. Although many reports on the tactile displays present hoticold surfaces by changing the surface werature, the proposed display is the first one that can control thermal conductivity. The device contains liquid metal, whose contact to the top titanium plate determines the thermal conductivity of the device and thus, the thermal sensation presented to the users. This device can be a good platform for the study of thermal sensation.
引用
收藏
页码:1659 / 1661
页数:3
相关论文
共 50 条
  • [31] Determination of the thermal conductivity of foam aluminum
    A. N. Abramenko
    A. S. Kalinichenko
    Y. Burtser
    V. A. Kalinichenko
    S. A. Tanaeva
    I. P. Vasilenko
    Journal of Engineering Physics and Thermophysics, 1999, 72 (3) : 369 - 373
  • [32] Hierarchical Bayesian modeling for predicting ordinal responses of personalized thermal sensation: Application to outdoor thermal sensation data
    Lim, Jongyeon
    Akashi, Yasunori
    Song, Doosam
    Hwang, Hyokeun
    Kuwahara, Yasuhiro
    Yamamura, Shinji
    Yoshimoto, Naoki
    Itahashi, Kazuo
    BUILDING AND ENVIRONMENT, 2018, 142 : 414 - 426
  • [33] Microstructure and thermal conductivity of high thermal conductivity carbon/carbon composites
    Yao Yu-min
    Li Hong
    Liu Zheng-qi
    Yang Min
    Ren Mu-su
    Sun Jin-liang
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2020, 48 (11): : 155 - 161
  • [34] Reduction in thermal conductivity of BiSbTe lump
    Kaleem Ahmad
    C. Wan
    M. A. Al-Eshaikh
    A. N. Kadachi
    Applied Physics A, 2017, 123
  • [35] A theoretical model for thermal conductivity of nanofluids
    Chebbi, Rachid
    MATERIALS EXPRESS, 2017, 7 (01) : 51 - 58
  • [36] Determination of the thermal conductivity in solidifying ingots
    Tolstykh, V.K.
    Volodin, N.A.
    Inzhenerno-Fizicheskii Zhurnal, 2003, 76 (02): : 163 - 165
  • [37] Study on thermal sensation and thermal comfort in environment with moderate temperature ramps
    Wu, Qingqing
    Liu, Jianhua
    Zhang, Liang
    Zhang, Jiawen
    Jiang, Linlin
    BUILDING AND ENVIRONMENT, 2020, 171
  • [38] Computation of thermal conductivity of fibre from thermal conductivity of twisted yarn
    Rengasamy, RS
    Kawabata, S
    INDIAN JOURNAL OF FIBRE & TEXTILE RESEARCH, 2002, 27 (04) : 342 - 345
  • [39] Thermal expansion and thermal conductivity of cesium molybdate
    Minato, K
    Takano, M
    Fukuda, K
    Sato, S
    Ohashi, H
    JOURNAL OF ALLOYS AND COMPOUNDS, 1997, 255 (1-2) : 18 - 23
  • [40] Thermal conductivity and thermal boundary resistance of nanostructures
    Konstantinos Termentzidis
    Jayalakshmi Parasuraman
    Carolina Abs Da Cruz
    Samy Merabia
    Dan Angelescu
    Frédéric Marty
    Tarik Bourouina
    Xavier Kleber
    Patrice Chantrenne
    Philippe Basset
    Nanoscale Research Letters, 6