SHORT KOSZUL MODULES

被引:3
作者
Avramov, Luchezar L. [1 ]
Iyengar, Srikanth B. [1 ]
Sega, Liana M. [2 ]
机构
[1] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA
[2] Univ Missouri, Dept Math & Stat, Kansas City, MO 64110 USA
基金
美国国家科学基金会;
关键词
Koszul algebras; Koszul module;
D O I
10.1216/JCA-2010-2-3-249
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is concerned with graded modules M with linear resolutions over a standard graded algebra R. It is proved that if such an M has Hilbert series H-M (s) of the form ps(d) + qs(d+1), then the algebra R is Koszul; if, in addition, M has constant Betti numbers, then H-R(s) = 1+es+(e - 1)s(2) When H-R(s) = 1 + es + rs(2) with r <= e - 1, and R is Gorenstein or e = r + 1 <= 3, it is proved that generic R-modules with q <= (e - 1)p are linear.
引用
收藏
页码:249 / 279
页数:31
相关论文
共 20 条
[1]  
[Anonymous], 1965, PUBL MATH-PARIS
[2]  
[Anonymous], 2005, Univ. Lecture Ser.
[3]   Free resolutions over short local rings [J].
Avramov, Luchezar L. ;
Iyengar, Srikanth B. ;
Sega, Liana M. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 78 :459-476
[4]  
Backelin J., 1985, REV ROUMAINE MATH PU, V30, P85
[5]   ALGEBRA STRUCTURES FOR FINITE FREE RESOLUTIONS, AND SOME STRUCTURE THEOREMS FOR IDEALS OF CODIMENSION .3. [J].
BUCHSBAUM, DA ;
EISENBUD, D .
AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (03) :447-485
[6]  
Conca A, 2001, MATH SCAND, V89, P201
[7]   Grobner bases for spaces of quadrics of low codimension [J].
Conca, A .
ADVANCES IN APPLIED MATHEMATICS, 2000, 24 (02) :111-124
[8]   Grobner flags and Gorenstein algebras [J].
Conca, A ;
Rossi, ME ;
Valla, G .
COMPOSITIO MATHEMATICA, 2001, 129 (01) :95-121
[10]  
Froberg R., 2002, HOMOL HOMOTOPY APPL, V4, P227