Acceleration of the Arnoldi method and real eigenvalues of the non-Hermitian Wilson-Dirac operator

被引:12
作者
Bergner, Georg [1 ]
Wuilloud, Jair [2 ]
机构
[1] Univ Munster, Inst Theoret Phys, D-48149 Munster, Germany
[2] Univ Bern, Albert Einstein Inst Fundamental Phys, Inst Theoret Phys, CH-3012 Bern, Switzerland
关键词
Lattice QCD; Arnoldi algorithm; Wilson-Dirac operator eigenvalues; Super Yang-Mills theory; LOW-LYING EIGENMODES; YANG-MILLS THEORY; INDEX THEOREM; LATTICE; QCD;
D O I
10.1016/j.cpc.2011.10.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we present a method for the computation of the low-lying real eigenvalues of the Wilson-Dirac operator based on the Arnoldi algorithm. These eigenvalues contain information about several observables. We used them to calculate the sign of the fermion determinant in one-flavor QCD and the sign of the Pfaffian in N = 1 super Yang-Mills theory. The method is based on polynomial transformations of the Wilson-Dirac operator, leading to considerable improvements of the computation of eigenvalues. We introduce an iterative procedure for the construction of the polynomials and demonstrate the improvement in the efficiency of the computation. In general, the method can be applied to operators with a symmetric and bounded eigenspectrum. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:299 / 304
页数:6
相关论文
共 19 条
[1]  
[Anonymous], 1992, Numerical Methods for Large Eigenvalue Problems
[2]   Convergence of polynomial restart Krylov methods for eigenvalue computations [J].
Beattie, CA ;
Embree, M ;
Sorensen, DC .
SIAM REVIEW, 2005, 47 (03) :492-515
[3]   Complete spectra of the Dirac operator and their relation to confinement [J].
Bruckmann, Falk ;
Gattringer, Christof ;
Hagen, Christian .
PHYSICS LETTERS B, 2007, 647 (01) :56-61
[4]   Monte Carlo simulation of SU(2) Yang-Mills theory with light gluinos [J].
Campos, I ;
Kirchner, R ;
Montvay, I ;
Westphalen, J ;
Feo, A ;
Luckmann, S ;
Münster, G ;
Spanderen, K .
EUROPEAN PHYSICAL JOURNAL C, 1999, 11 (03) :507-527
[5]  
Creutz M., ARXIVHEPLAT0511052
[6]   Deflation of eigenvalues for iterative methods in lattice QCD [J].
Darnell, D ;
Morgan, RB ;
Wilcox, W .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2004, 129 :856-858
[7]  
Demmouche K, 2010, EUR PHYS J C, V69, P147, DOI 10.1140/epjc/s10052-010-1390-7
[8]   Hadron masses in QCD with one quark flavour [J].
Farchioni, F. ;
Montvay, I. ;
Muenster, G. ;
Scholz, E. E. ;
Sudmann, T. ;
Wuilloud, J. .
EUROPEAN PHYSICAL JOURNAL C, 2007, 52 (02) :305-314
[9]   Remnant index theorem and low-lying eigenmodes for twisted mass fermions [J].
Gattringer, C ;
Solbrig, S .
PHYSICS LETTERS B, 2005, 621 (1-2) :195-200
[10]   Clover improvement, spectrum and Atiyah-Singer index theorem for the Dirac operator on the lattice [J].
Gattringer, C ;
Hip, I .
NUCLEAR PHYSICS B, 1999, 541 (1-2) :305-319