Induction of macrophage-derived SLPI by Mycobacterium tuberculosis depends on TLR2 but not MyD88

被引:29
|
作者
Ding, AH
Yu, HW
Yang, JX
Shi, SP
Ehrt, S
机构
[1] Cornell Univ, Dept Microbiol & Immunol, Weill Med Coll, New York, NY 10021 USA
[2] Cornell Univ, Program Immunol & Microbial Pathogenesis, Weill Grad Sch Med Sci, New York, NY USA
关键词
rodent; macrophage; mycobacteria; signal transduction; protease inhibitor;
D O I
10.1111/j.1365-2567.2005.02238.x
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Macrophages respond to Mycobacterium tuberculosis by regulating expression of gene products that initiate a host innate response to this micro-organism. In this study, we report that exposure of murine peritoneal macrophages to heat-killed Mycobacterium tuberculosis (HK-Mtb) led to an increase in secretory leucocyte protease inhibitor (SLPI) gene expression and protein secretion in a time- and dose-dependent manner. HK-Mtb-induced SLPI mRNA expression was sensitive neither to a protein synthesis inhibitor, cycloheximide, nor to an actin polymerization blocker, cytochalasin D. Treatment of macrophages with interferon (IFN)-gamma inhibited HK-Mtb-induced SLPI expression. RAW264.7 cells stably expressing SLPI produced a reduced level of tumour necrosis factor (TNF) in response to HK-Mtb as compared with mock transfectants. Aerosol infection of mice with live M. tuberculosis resulted in an induction of SLPI gene expression in infected lungs. Macrophages from Toll-like receptor 4 (TLR4)(-/-) or MyD88(-/-) mice responded to M. tuberculosis similarly to wild-type macrophages by exhibiting increased SLPI expression. In contrast, macrophages from TLR2(-/-) mice were incapable of inducing SLPI in response to M. tuberculosis. This induction signifies the presence of a TLR2-dependent but MyD88-independent M. tuberculosis signalling pathway, suggesting involvement of adaptor protein(s) other than MyD88 in M. tuberculosis-mediated induction of SLPI.
引用
收藏
页码:381 / 389
页数:9
相关论文
共 50 条
  • [1] Mycobacterium indicus pranii mediates macrophage activation through TLR2 and NOD2 in a MyD88 dependent manner
    Pandey, Rajeev Kumar
    Sodhi, Ajit
    Biswas, Subhra K.
    Dahiya, Yogesh
    Dhillon, Manprit K.
    VACCINE, 2012, 30 (39) : 5748 - 5754
  • [2] MyD88 in Mycobacterium tuberculosis infection
    Cervantes, Jorge L.
    MEDICAL MICROBIOLOGY AND IMMUNOLOGY, 2017, 206 (03) : 187 - 193
  • [3] MyD88 in Mycobacterium tuberculosis infection
    Jorge L. Cervantes
    Medical Microbiology and Immunology, 2017, 206 : 187 - 193
  • [4] Containment of aerogenic Mycobacterium tuberculosis infection in mice does not require MyD88 adaptor function for TLR2, -4 and -9
    Hoelscher, Christoph
    Reiling, Norbert
    Schaible, Ulrich E.
    Hoelscher, Alexandra
    Bathmann, Clara
    Korbel, Daniel
    Lenz, Insa
    Sonntag, Tanja
    Kroeger, Svenja
    Akira, Shizuo
    Mossmann, Horst
    Kirschning, Carsten J.
    Wagner, Hermann
    Freudenberg, Marina
    Ehlers, Stefan
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2008, 38 (03) : 680 - 694
  • [5] THE ABSENCE OF TLR2 and MYD88 EXACERBATES PREGRESIVE ADRIAMYCIN NEPHROPATHY
    Wang, P.
    Wu, H.
    Ma, J.
    Chadban, S. J.
    NEPHROLOGY, 2009, 14 : A39 - A39
  • [6] Role of Tlr2 and Myd88 in modulation of intestinal goblet cell function
    Cario, Elke
    Podolsky, Daniel K.
    GASTROENTEROLOGY, 2007, 132 (04) : A561 - A561
  • [7] The TLR2/MYD88 and TLR4/MYD88 Signaling Pathways Activate Notch Signaling in the Fetal Brain in Response to Intrauterine Inflammation.
    Tulina, Natalia
    Brown, Amy
    Barila, Guillermo
    Elovitz, Michal A.
    REPRODUCTIVE SCIENCES, 2018, 25 : 283A - 284A
  • [8] MyD88 but not TLR2, 4 or 9 is essential for IL-12 induction by lactic acid bacteria
    Ichikawa, Shintaro
    Fujii, Rei
    Fujiwara, Dalsuke
    Komiyama, Yutaka
    Kaisho, Tsuneyasu
    Sakaguchi, Masahiro
    Konishi, Yutaka
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2007, 71 (12) : 3026 - 3032
  • [9] MiR-23a-5p modulates mycobacterial survival and autophagy during mycobacterium tuberculosis infection through TLR2/MyD88/NF-κB pathway by targeting TLR2
    Gu, Xing
    Gao, Yan
    Mu, De-Guang
    Fu, En-Qing
    EXPERIMENTAL CELL RESEARCH, 2017, 354 (02) : 71 - 77
  • [10] Cell-intrinsic TLR2/MyD88 pathway in breast and colon cancer
    Kuo, Angera H.
    Scheeren, Ferenc A.
    CELL CYCLE, 2014, 13 (24) : 3785 - 3786