In-situ stabilization of membranes for improved large-area and high-density nanostencil lithography

被引:0
|
作者
van den Boogaart, MAF [1 ]
Lishchynska, M [1 ]
Doeswijk, LM [1 ]
Greer, JC [1 ]
Brugger, J [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Microsyst, CH-1015 Lausanne, Switzerland
关键词
shadow mask; nanostencil; stabilization; local deposition; FEM;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present a MEMS process to fabricate aperture independent stabilization of silicon nitride membranes to be used as miniature shadow masks or (nano) stencils. Large-area thin-film solid-state membranes were fabricated with silicon nitride corrugated support structures integrated into the stencil. These corrugated support structures are aimed to reduce the membrane deformation due to the deposition induced stress and thus to improve the dimensional control of the deposited patterns. We have performed physical vapor deposition (PVD) of Cr on unstabilized i.e. standard stencil membranes and stabilized stencil membranes. The structures were also modeled using commercial FEM tools. The simulation and experimental results confirm that introducing stabilization structures in the membrane can significantly reduce out-of-plane deformations of the membrane. The results of this study can be applied as a guideline for the design and fabrication of mechanically stable, complex stencil membranes.
引用
收藏
页码:1465 / 1468
页数:4
相关论文
共 50 条
  • [1] Silicon-supported membranes for improved large-area and high-density micro/nanostencil lithography
    van den Boogaart, Marc A. F.
    Doeswijk, Lianne M.
    Brugger, Juergen
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2006, 15 (06) : 1663 - 1670
  • [2] Large-area optical metasurface fabrication using nanostencil lithography
    Su, Peter
    Shalaginov, Mikhail
    Gu, Tian
    An, Sensong
    Li, Duanhui
    Li, Lan
    Jiang, Helena
    Joo, Seoyoung
    Kimerling, Lionel
    Zhang, Hualiang
    Hu, Juejun
    Agarwal, Anuradha
    OPTICS LETTERS, 2021, 46 (10) : 2324 - 2327
  • [3] Large-area high-density helicon plasma sources
    Shinohara, S.
    Motomura, T.
    Tanaka, K.
    Tanikawa, T.
    Shamrai, K. P.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2010, 19 (03):
  • [4] LARGE-AREA HIGH-DENSITY PRECISION ETCHED WIRING
    GUDITZ, EA
    HERNDON, TO
    LANDOCH, WJ
    GAGNON, GP
    PROCEEDINGS ELECTRONIC COMPONENTS CONFERENCE, 1968, (MAY): : 325 - &
  • [5] The control of the high-density microwave plasma for large-area electronics
    Shirai, H
    Sakuma, Y
    Ueyama, H
    THIN SOLID FILMS, 1999, 337 (1-2) : 12 - 17
  • [6] Fabrication of high-density large-area conducting-polymer nanostructures
    Dong, Bin
    Lu, Nan
    Zelsmann, Marc
    Kehagias, Nikolaos
    Fuchs, Harald
    Torres, Clivia M. Sotomayor
    Chi, Lifeng
    ADVANCED FUNCTIONAL MATERIALS, 2006, 16 (15) : 1937 - 1942
  • [7] A large-area continuous accelerator with the extraction of a high-density electron beam
    Baranov, G. A.
    Bodakin, L. V.
    Gurashvili, V. A.
    Djigailo, I. D.
    Komarov, O. V.
    Kosogorov, S. L.
    Kuzmin, V. N.
    Sen, V. I.
    Tkachenko, D. Yu.
    Uspensky, N. A.
    Shvedyuk, V. Ya.
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2013, 56 (01) : 72 - 75
  • [8] A large-area continuous accelerator with the extraction of a high-density electron beam
    G. A. Baranov
    L. V. Bodakin
    V. A. Gurashvili
    I. D. Djigailo
    O. V. Komarov
    S. L. Kosogorov
    V. N. Kuzmin
    V. I. Sen
    D. Yu. Tkachenko
    N. A. Uspensky
    V. Ya. Shvedyuk
    Instruments and Experimental Techniques, 2013, 56 : 72 - 75
  • [9] Fabrication of large-area, high-density Ni nanopillar arrays on GaAs substrates using diblock copolymer lithography and electrodeposition
    Chang, Chun-Chieh
    Botez, Dan
    Wan, Lei
    Nealey, Paul F.
    Ruder, Steven
    Kuech, Thomas F.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2013, 31 (03):
  • [10] HEATING OF LARGE-AREA SUBSTRATES FOR IN-SITU DEPOSITION OF YBCO
    DREHMAN, AJ
    DEROV, JS
    HORRIGAN, JA
    ANDREWS, RJ
    LINDEN, DS
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1995, 5 (02) : 1793 - 1796