GaSb-based mid infrared photonic crystal surface emitting lasers

被引:16
作者
Pan, Chien Hung [1 ,2 ,3 ]
Lin, Chien Hung [2 ,3 ]
Chang, Ting Yuan [4 ,5 ]
Lu, Tien Chang [4 ,5 ]
Lee, Chien Ping [2 ,3 ]
机构
[1] Natl Chiao Tung Univ, Ctr Nano Sci & Technol, Hsinchu 30010, Taiwan
[2] Natl Chiao Tung Univ, Dept Elect Engn, Hsinchu 30010, Taiwan
[3] Natl Chiao Tung Univ, Inst Elect, Hsinchu 30010, Taiwan
[4] Natl Chiao Tung Univ, Dept Photon, Hsinchu 30010, Taiwan
[5] Natl Chiao Tung Univ, Inst Electroopt Engn, Hsinchu 30010, Taiwan
来源
OPTICS EXPRESS | 2015年 / 23卷 / 09期
关键词
DISTRIBUTED-FEEDBACK LASERS; MU-M; DIODE-LASERS; POLARIZATION; SPECTROSCOPY; DESIGN;
D O I
10.1364/OE.23.011741
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrated for the first time above room temperature (RT) GaSb-based mid-infrared photonic crystal surface emitting lasers (PCSELs). The lasers, under optical pumping, emitted at lambda(lasing) similar to 2.3 mu m, had a temperature insensitive line width of 0.3nm, and a threshold power density (P-th) similar to 0.3KW/cm(2) at RT. Type-I InGaAsSb quantum wells were used as the active region, and the photonic crystal, a square lattice, was fabricated on the surface to provide optical feedback for laser operation and light coupling for surface emission. The PCSELs were operated at temperatures up to 350K with a small wavelength shift rate of 0.21 nm/K. The PCSELs with different air hole depth were studied. The effect of the etched depth on the laser performance was also investigated using numerical simulation based on the coupled-wave theory. Both the laser wavelength and the threshold power decrease as the depth of the PC becomes larger. The calculated results agree well with the experimental findings. (C) 2015 Optical Society of America
引用
收藏
页码:11741 / 11747
页数:7
相关论文
共 26 条
  • [1] Mid-infrared semiconductor heterostructure lasers for gas sensing applications
    Bauer, A.
    Roessner, K.
    Lehnhardt, T.
    Kamp, M.
    Hoefling, S.
    Worschech, L.
    Forchel, A.
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2011, 26 (01)
  • [2] Single-mode 2.65 μm InGaAsSb/AlInGaAsSb laterally coupled distributed-feedback diode lasers for atmospheric gas detection
    Briggs, Ryan M.
    Frez, Clifford
    Bagheri, Mahmood
    Borgentun, Carl E.
    Gupta, James A.
    Witinski, Mark F.
    Anderson, James G.
    Forouhar, Siamak
    [J]. OPTICS EXPRESS, 2013, 21 (01): : 1317 - 1323
  • [3] Distributed feedback laser biosensor incorporating a titanium dioxide nanorod surface
    Ge, Chun
    Lu, Meng
    Zhang, Wei
    Cunningham, Brian T.
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (16)
  • [4] Watt-class high-power, high-beam-quality photonic-crystal lasers
    Hirose, Kazuyoshi
    Liang, Yong
    Kurosaka, Yoshitaka
    Watanabe, Akiyoshi
    Sugiyama, Takahiro
    Noda, Susumu
    [J]. NATURE PHOTONICS, 2014, 8 (05) : 406 - 411
  • [5] Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure
    Imada, M
    Noda, S
    Chutinan, A
    Tokuda, T
    Murata, M
    Sasaki, G
    [J]. APPLIED PHYSICS LETTERS, 1999, 75 (03) : 316 - 318
  • [6] Multidirectionally distributed feedback photonic crystal lasers
    Imada, M
    Chutinan, A
    Noda, S
    Mochizuki, M
    [J]. PHYSICAL REVIEW B, 2002, 65 (19): : 1 - 8
  • [7] A QEPAS based methane sensor with a 2.35 μm antimonide laser
    Jahjah, M.
    Vicet, A.
    Rouillard, Y.
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2012, 106 (02): : 483 - 489
  • [8] GaSb-based mid-infrared 2-5 pm laser diodes
    Joullié, A
    Christol, P
    [J]. COMPTES RENDUS PHYSIQUE, 2003, 4 (06) : 621 - 637
  • [9] High Brightness 975 nm Surface-emitting Distributed Feedback Laser & Arrays
    Kanskar, M.
    Cai, J.
    Kedlaya, D.
    Olson, D.
    Xiao, Y.
    Klos, T.
    Martin, M.
    Galstad, C.
    Macomber, S. H.
    [J]. LASER TECHNOLOGY FOR DEFENSE AND SECURITY VI, 2010, 7686
  • [10] Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared
    Kim, M.
    Kim, C. S.
    Bewley, W. W.
    Lindle, J. R.
    Canedy, C. L.
    Vurgaftman, I.
    Meyer, J. R.
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (19)