ANALYSIS OF STOCHASTIC SENSITIVITY OF TURING PATTERNS IN DISTRIBUTED REACTION-DIFFUSION SYSTEMS

被引:1
|
作者
Kolinichenko, A. P. [1 ]
Ryashko, L. B. [1 ]
机构
[1] Ural Fed Univ, Ul Lenina 51, Ekaterinburg 620075, Russia
来源
IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA | 2020年 / 55卷
基金
俄罗斯科学基金会;
关键词
reaction-diffusion model; Turing instability; self-organization; stochastic sensitivity; DIFFERENTIAL-EQUATIONS; NOISE;
D O I
10.35634/2226-3594-2020-55-10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a distributed stochastic Brusselator model with diffusion is studied. We show that a variety of stable spatially heterogeneous patterns is generated in the Turing instability zone. The effect of random noise on the stochastic dynamics near these patterns is analysed by direct numerical simulation. Noise-induced transitions between coexisting patterns are studied. A stochastic sensitivity of the pattern is quantified as the mean-square deviation from the initial unforced pattern. We show that the stochastic sensitivity is spatially non-homogeneous and significantly differs for coexisting patterns. A dependence of the stochastic sensitivity on the variation of diffusion coefficients and intensity of noise is discussed.
引用
收藏
页码:155 / 163
页数:9
相关论文
共 50 条
  • [41] Bifurcation and Turing patterns of reaction-diffusion activator-inhibitor model
    Wu, Ranchao
    Zhou, Yue
    Shao, Yan
    Chen, Liping
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 482 : 597 - 610
  • [42] Turing instability in the reaction-diffusion network
    Zheng, Qianqian
    Shen, Jianwei
    Xu, Yong
    PHYSICAL REVIEW E, 2020, 102 (06)
  • [43] Turing space in reaction-diffusion systems with density-dependent cross diffusion
    Zemskov, E. P.
    Kassner, K.
    Hauser, M. J. B.
    Horsthemke, W.
    PHYSICAL REVIEW E, 2013, 87 (03):
  • [44] Drift estimation for stochastic reaction-diffusion systems
    Pasemann, Gregor
    Stannat, Wilhelm
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 547 - 579
  • [45] Stability of switched stochastic reaction-diffusion systems
    Li, Yixuan
    Ren, Yong
    INTERNATIONAL JOURNAL OF CONTROL, 2023, 96 (10) : 2464 - 2470
  • [46] Stability of reaction-diffusion systems with stochastic switching
    Pan, Lijun
    Cao, Jinde
    Alsaedi, Ahmed
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2019, 24 (03): : 315 - 331
  • [47] MODALITY ANALYSIS OF PATTERNS IN REACTION-DIFFUSION SYSTEMS WITH RANDOM PERTURBATIONS
    Kolinichenko, A. P.
    Ryashko, L. B.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2019, 53 : 73 - 82
  • [48] Reaction-diffusion equations on complex networks and Turing patterns, via p-adic analysis
    Zuniga-Galindo, W. A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (01)
  • [49] Analysis of stationary droplets in a generic Turing reaction-diffusion system
    Woolley, Thomas E.
    Baker, Ruth E.
    Maini, Philip K.
    Luis Aragon, Jose
    Barrio, Rafael A.
    PHYSICAL REVIEW E, 2010, 82 (05):
  • [50] Stability Analysis and Turing Instability of A SIR Model with Reaction-Diffusion
    Zhang, Mingyue
    Xiao, Min
    Qian, Rong
    Fang, Rong
    Li, Jian
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 25 - 30