ANALYSIS OF STOCHASTIC SENSITIVITY OF TURING PATTERNS IN DISTRIBUTED REACTION-DIFFUSION SYSTEMS

被引:1
|
作者
Kolinichenko, A. P. [1 ]
Ryashko, L. B. [1 ]
机构
[1] Ural Fed Univ, Ul Lenina 51, Ekaterinburg 620075, Russia
来源
IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA | 2020年 / 55卷
基金
俄罗斯科学基金会;
关键词
reaction-diffusion model; Turing instability; self-organization; stochastic sensitivity; DIFFERENTIAL-EQUATIONS; NOISE;
D O I
10.35634/2226-3594-2020-55-10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a distributed stochastic Brusselator model with diffusion is studied. We show that a variety of stable spatially heterogeneous patterns is generated in the Turing instability zone. The effect of random noise on the stochastic dynamics near these patterns is analysed by direct numerical simulation. Noise-induced transitions between coexisting patterns are studied. A stochastic sensitivity of the pattern is quantified as the mean-square deviation from the initial unforced pattern. We show that the stochastic sensitivity is spatially non-homogeneous and significantly differs for coexisting patterns. A dependence of the stochastic sensitivity on the variation of diffusion coefficients and intensity of noise is discussed.
引用
收藏
页码:155 / 163
页数:9
相关论文
共 50 条
  • [11] Oscillatory turing patterns in reaction-diffusion systems with two coupled layers
    Yang, LF
    Epstein, IR
    PHYSICAL REVIEW LETTERS, 2003, 90 (17) : 1 - 178303
  • [12] Turing instabilities in reaction-diffusion systems with cross diffusion
    Duccio Fanelli
    Claudia Cianci
    Francesca Di Patti
    The European Physical Journal B, 2013, 86
  • [13] Turing instabilities in reaction-diffusion systems with cross diffusion
    Fanelli, Duccio
    Cianci, Claudia
    Di Patti, Francesca
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (04):
  • [14] Turing Instability in Reaction-Diffusion Systems with Nonlinear Diffusion
    Zemskov, E. P.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2013, 117 (04) : 764 - 769
  • [15] Turing instability in reaction-diffusion systems with nonlinear diffusion
    E. P. Zemskov
    Journal of Experimental and Theoretical Physics, 2013, 117 : 764 - 769
  • [16] Cross-diffusion-induced transitions between Turing patterns in reaction-diffusion systems
    Meng, Xing-Rou
    Liu, Ruo-Qi
    He, Ya-Feng
    Deng, Teng-Kun
    Liu, Fu-Cheng
    ACTA PHYSICA SINICA, 2023, 72 (19)
  • [17] Oscillatory Turing patterns in a simple reaction-diffusion system
    Liu, Ruey-Tarng
    Liaw, Sy-Sang
    Maini, Philip K.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2007, 50 (01) : 234 - 238
  • [18] Turing Bifurcation and Pattern Formation of Stochastic Reaction-Diffusion System
    Zheng, Qianiqian
    Wang, Zhijie
    Shen, Jianwei
    Iqbal, Hussain Muhammad Ather
    ADVANCES IN MATHEMATICAL PHYSICS, 2017, 2017
  • [19] conditions for Turing and wave instabilities in reaction-diffusion systems
    Villar-Sepulveda, Edgardo
    Champneys, Alan R. R.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2023, 86 (03)
  • [20] ON TURING-HOPF INSTABILITIES IN REACTION-DIFFUSION SYSTEMS
    Ricard, Mariano Rodriguez
    BIOMAT 2007, 2008, : 293 - 313