Overexpression of a Malus baccata MYB Transcription Factor Gene MbMYB4 Increases Cold and Drought Tolerance in Arabidopsis thaliana

被引:52
|
作者
Yao, Chunya [1 ]
Li, Xingguo [1 ]
Li, Yingmei [1 ]
Yang, Guohui [1 ]
Liu, Wanda [2 ]
Shao, Bangtao [1 ]
Zhong, Jiliang [1 ]
Huang, Pengfei [1 ]
Han, Deguo [1 ]
机构
[1] Northeast Agr Univ, Minist Agr & Rural, Coll Hort & Landscape Architecture, Natl Local Joint Engn Res Ctr Dev & Utilizat S, Harbin 150030, Peoples R China
[2] Heilongjiang Acad Agr Sci, Hort Branch, Harbin 150040, Peoples R China
基金
中国国家自然科学基金;
关键词
Malus baccata (L; ) Borkh; MbMYB4; cold stress; drought stress; DNA-BINDING DOMAIN; PRELIMINARY FUNCTIONAL-ANALYSIS; IRON STRESS TOLERANCE; LOW-TEMPERATURE; ABNORMAL FLOWER; ABSCISIC-ACID; EXPRESSION; FAMILY; ACCUMULATION; RECOGNITION;
D O I
10.3390/ijms23031794
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the natural environment, plants often face unfavorable factors such as drought, cold, and freezing, which affect their growth and yield. The MYB (v-myb avian myeloblastosis viral oncogene homolog) transcription factor family is widely involved in plant responses to biotic and abiotic stresses. In this study, Malus baccata (L.) Borkh was used as the research material, and a gene MbMYB4 of the MYB family was cloned from it. The open reading frame (ORF) of MbMYB4 was found to be 762 bp, encoding 253 amino acids; sequence alignment results and predictions of the protein structure indicated that the MbMYB4 protein contained the conserved MYB domain. Subcellular localization showed that MbMYB4 was localized in the nucleus. In addition, the use of quantitative real-time PCR (qPCR) technology found that the expression of MbMYB4 was enriched in the young leaf and root, and it was highly affected by cold and drought treatments in M. baccata seedlings. When MbMYB4 was introduced into Arabidopsis thaliana, it greatly increased the cold and drought tolerance in the transgenic plant. Under cold and drought stresses, the proline and chlorophyll content, and peroxidase (POD) and catalase (CAT) activities of transgenic A. thaliana increased significantly, and the content of malondialdehyde (MDA) and the relative conductivity decreased significantly, indicating that the plasma membrane damage of transgenic A. thaliana was lesser. Therefore, the overexpression of the MbMYB4 gene in A. thaliana can enhance the tolerance of transgenic plants to cold and drought stresses.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Overexpression of a Fragaria x ananassa AP2/ERF Transcription Factor Gene (FaTINY2) Increases Cold and Salt Tolerance in Arabidopsis thaliana
    Li, Wenhui
    Zhang, Wenhao
    Li, Huiwen
    Yao, Anqi
    Ma, Zhongyong
    Kang, Rui
    Guo, Yanbo
    Li, Xingguo
    Yu, Wenquan
    Han, Deguo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (05)
  • [32] Overexpression of MxFRO6, a FRO gene from Malus xiaojinensis, increases iron and salt tolerance in Arabidopsis thaliana
    Yingmei Li
    Jiliang Zhong
    Pengfei Huang
    Bangtao Shao
    Wenhui Li
    Wanda Liu
    Yu Wang
    Liping Xie
    Meina Han
    Deguo Han
    In Vitro Cellular & Developmental Biology - Plant, 2022, 58 : 189 - 199
  • [33] Overexpression of MxFRO6, a FRO gene from Malus xiaojinensis, increases iron and salt tolerance in Arabidopsis thaliana
    Li, Yingmei
    Zhong, Jiliang
    Huang, Pengfei
    Shao, Bangtao
    Li, Wenhui
    Liu, Wanda
    Wang, Yu
    Xie, Liping
    Han, Meina
    Han, Deguo
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2022, 58 (02) : 189 - 199
  • [34] Overexpression of the wheat NAC transcription factor TaSNAC4-3A gene confers drought tolerance in transgenic Arabidopsis
    Mei, Fangming
    Chen, Bin
    Li, Fangfang
    Zhang, Yifang
    Kang, Zhensheng
    Wang, Xiaojing
    Mao, Hude
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 160 : 37 - 50
  • [35] GBF3 transcription factor imparts drought tolerance in Arabidopsis thaliana
    Venkategowda Ramegowda
    Upinder Singh Gill
    Palaiyur Nanjappan Sivalingam
    Aarti Gupta
    Chirag Gupta
    Geetha Govind
    Karaba N. Nataraja
    Andy Pereira
    Makarla Udayakumar
    Kirankumar S. Mysore
    Muthappa Senthil-Kumar
    Scientific Reports, 7
  • [36] GBF3 transcription factor imparts drought tolerance in Arabidopsis thaliana
    Ramegowda, Venkategowda
    Gill, Upinder Singh
    Sivalingam, Palaiyur Nanjappan
    Gupta, Aarti
    Gupta, Chirag
    Govind, Geetha
    Nataraja, Karaba N.
    Pereira, Andy
    Udayakumar, Makarla
    Mysore, Kirankumar S.
    Senthil-Kumar, Muthappa
    SCIENTIFIC REPORTS, 2017, 7
  • [37] Transcription factor MdCBF1 gene increases freezing stress tolerance in transgenic Arabidopsis thaliana
    Xue, Y.
    Wang, Y. Y.
    Peng, R. H.
    Zhen, J. L.
    Zhu, B.
    Gao, J. J.
    Zhao, W.
    Han, H. J.
    Yao, Q. H.
    BIOLOGIA PLANTARUM, 2014, 58 (03) : 499 - 506
  • [38] Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants
    Vannini, C
    Locatelli, F
    Bracale, M
    Magnani, E
    Marsoni, M
    Osnato, M
    Mattana, M
    Baldoni, E
    Coraggio, I
    PLANT JOURNAL, 2004, 37 (01): : 115 - 127
  • [39] ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation
    Bolt, Sylvia
    Zuther, Ellen
    Zintl, Stefanie
    Hincha, Dirk K.
    Schmuelling, Thomas
    PLANT CELL AND ENVIRONMENT, 2017, 40 (01): : 108 - 120
  • [40] Overexpression of cphA gene from Nostoc flagelliforme improves the drought tolerance of Arabidopsis thaliana
    Wang, Lingxia
    Wang, Shuping
    Li, Xiaoxu
    Wang, Meng
    Zhang, Zheng
    Shi, Jing
    Xu, Tingting
    Liang, Wenyu
    SOUTH AFRICAN JOURNAL OF BOTANY, 2020, 132 : 127 - 131