Overexpression of a Malus baccata MYB Transcription Factor Gene MbMYB4 Increases Cold and Drought Tolerance in Arabidopsis thaliana

被引:52
|
作者
Yao, Chunya [1 ]
Li, Xingguo [1 ]
Li, Yingmei [1 ]
Yang, Guohui [1 ]
Liu, Wanda [2 ]
Shao, Bangtao [1 ]
Zhong, Jiliang [1 ]
Huang, Pengfei [1 ]
Han, Deguo [1 ]
机构
[1] Northeast Agr Univ, Minist Agr & Rural, Coll Hort & Landscape Architecture, Natl Local Joint Engn Res Ctr Dev & Utilizat S, Harbin 150030, Peoples R China
[2] Heilongjiang Acad Agr Sci, Hort Branch, Harbin 150040, Peoples R China
基金
中国国家自然科学基金;
关键词
Malus baccata (L; ) Borkh; MbMYB4; cold stress; drought stress; DNA-BINDING DOMAIN; PRELIMINARY FUNCTIONAL-ANALYSIS; IRON STRESS TOLERANCE; LOW-TEMPERATURE; ABNORMAL FLOWER; ABSCISIC-ACID; EXPRESSION; FAMILY; ACCUMULATION; RECOGNITION;
D O I
10.3390/ijms23031794
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the natural environment, plants often face unfavorable factors such as drought, cold, and freezing, which affect their growth and yield. The MYB (v-myb avian myeloblastosis viral oncogene homolog) transcription factor family is widely involved in plant responses to biotic and abiotic stresses. In this study, Malus baccata (L.) Borkh was used as the research material, and a gene MbMYB4 of the MYB family was cloned from it. The open reading frame (ORF) of MbMYB4 was found to be 762 bp, encoding 253 amino acids; sequence alignment results and predictions of the protein structure indicated that the MbMYB4 protein contained the conserved MYB domain. Subcellular localization showed that MbMYB4 was localized in the nucleus. In addition, the use of quantitative real-time PCR (qPCR) technology found that the expression of MbMYB4 was enriched in the young leaf and root, and it was highly affected by cold and drought treatments in M. baccata seedlings. When MbMYB4 was introduced into Arabidopsis thaliana, it greatly increased the cold and drought tolerance in the transgenic plant. Under cold and drought stresses, the proline and chlorophyll content, and peroxidase (POD) and catalase (CAT) activities of transgenic A. thaliana increased significantly, and the content of malondialdehyde (MDA) and the relative conductivity decreased significantly, indicating that the plasma membrane damage of transgenic A. thaliana was lesser. Therefore, the overexpression of the MbMYB4 gene in A. thaliana can enhance the tolerance of transgenic plants to cold and drought stresses.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] Overexpression of a Fragaria vesca 1R-MYB Transcription Factor Gene (FvMYB114) Increases Salt and Cold Tolerance in Arabidopsis thaliana
    Li, Wenhui
    Li, Peng
    Chen, Huiyun
    Zhong, Jiliang
    Liang, Xiaoqi
    Wei, Yangfan
    Zhang, Lihua
    Wang, Haibo
    Han, Deguo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (06)
  • [12] Overexpression of a Camellia sinensis DREB transcription factor gene (CsDREB) increases salt and drought tolerance in transgenic Arabidopsis thaliana
    Wang, Mingle
    Zhuang, Jing
    Zou, Zhongwei
    Li, Qinghui
    Xin, Huahong
    Li, Xinghui
    JOURNAL OF PLANT BIOLOGY, 2017, 60 (05) : 452 - 461
  • [13] Overexpression of a Camellia sinensis DREB transcription factor gene (CsDREB) increases salt and drought tolerance in transgenic Arabidopsis thaliana
    Mingle Wang
    Jing Zhuang
    Zhongwei Zou
    Qinghui Li
    Huahong Xin
    Xinghui Li
    Journal of Plant Biology, 2017, 60 : 452 - 461
  • [14] MbMYBC1, a M. baccata MYB transcription factor, contribute to cold and drought stress tolerance in transgenic Arabidopsis
    Liu, Wanda
    Wang, Tianhe
    Wang, Yu
    Liang, Xiaoqi
    Han, Jilong
    Han, Deguo
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [15] Overexpression of a Malus baccata (L.) Borkh WRKY transcription factor gene MbWRKY65 increased the tolerance to cold and drought in transgenic tomato
    Yu, Chunwen
    Yao, Anqi
    Li, Xingguo
    Li, Wenhui
    Gao, Ruina
    Feng, Yuqing
    Li, Zhuxuan
    Guo, Xinxin
    Zhang, Lihua
    Han, Deguo
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2024, 60 (05) : 620 - 633
  • [16] MbNAC22, a Malus baccata NAC Transcription Factor, Increased Drought and Salt Tolerance in Arabidopsis
    Jiao, Kuibao
    Han, Jiaxin
    Guo, Baitao
    Wu, Yuqi
    Zhang, Lei
    Li, Yuze
    Song, Penghui
    Han, Deguo
    Duan, Yadong
    Li, Xingguo
    AGRONOMY-BASEL, 2023, 13 (05):
  • [17] A novel MYB transcription factor, GmMYBJ1, from soybean confers drought and cold tolerance in Arabidopsis thaliana
    Su, Lian-Tai
    Li, Jing-Wen
    Liu, De-Quan
    Zhai, Ying
    Zhang, Hai-Jun
    Li, Xiao-Wei
    Zhang, Qing-Lin
    Wang, Ying
    Wang, Qing-Yu
    GENE, 2014, 538 (01) : 46 - 55
  • [18] Transcription factor OsAP21 gene increases salt/drought tolerance in transgenic Arabidopsis thaliana
    Jin, Xiaofeng
    Xue, Yong
    Wang, Ren
    Xu, RanRan
    Bian, Lin
    Zhu, Bo
    Han, Hongjuan
    Peng, Rihe
    Yao, Quanhong
    MOLECULAR BIOLOGY REPORTS, 2013, 40 (02) : 1743 - 1752
  • [19] MbWRKY53, a M. baccata WRKY Transcription Factor, Contributes to Cold and Drought Stress Tolerance in Transgenic Arabidopsis thaliana
    Liu, Wanda
    Wang, Tianhe
    Liang, Xiaoqi
    Ye, Qinglei
    Wang, Yu
    Han, Jilong
    Han, Deguo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (14)
  • [20] Overexpression of Malus baccata WRKY40 (MbWRKY40) enhances stress tolerance in Arabidopsis subjected to cold and drought
    Han, Jiaxin
    Li, Xingguo
    Li, Wenhui
    Yao, Anqi
    Niu, Chenguang
    Hou, Ruining
    Liu, Wanda
    Wang, Yu
    Zhang, Lihua
    Han, Deguo
    PLANT STRESS, 2023, 10