Subquadratic Complexity Gaussian Normal Basis Multiplier over GF(2m) Using Addition of HMVP and TMVP

被引:0
作者
Yang, Chun-Sheng [1 ]
Pan, Jeng-Shyang [1 ,2 ,3 ]
Lee, Chiou-Yng [4 ]
机构
[1] Harbin Inst Technol, Shenzhen Grad Sch, Innovat Informat Ind Res Ctr, Harbin, Heilongjiang, Peoples R China
[2] Fujian Univ Technol, Fujian Prov Key Lab Big Data Min & Applicat, Fuzhou, Fujian, Peoples R China
[3] Chaoyang Univ Technol, Dept Informat Management, Taichung, Taiwan
[4] Lunghwa Univ Sci & Technol, Dept Comp Informat & Network Engn, Taoyuan, Taiwan
来源
JOURNAL OF INTERNET TECHNOLOGY | 2017年 / 18卷 / 07期
关键词
Subquadratic; GNB; HMVP; TMVP; NORMAL BASES;
D O I
10.6138/JIT.2017.18.7.20161113
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Efficient and high-performance ECC system plays an important role in network security. We propose a subquadratic complexity digit-serial multiplier based on Gaussian normal basis (GNB) employing Palindromic polynomial decomposition. Using Palindromic polynomial representation, GNB multiplication is expressed as the sum of a Hankel matrix-vector product (HMVP) and a Toeplitz matrix-vector product (TMVP). We present the novel addition of HMVP and TMVP scheme with subquadratic complexities applying two-way TMVP approach. Combining with Palindromic polynomial decomposition and partial product, GNB multiplication is implemented by a digit-serial architecture. According to the theoretical analysis, the proposed digit-serial multiplier has a lower complexities and a better trade-off between time and area.
引用
收藏
页码:1597 / 1603
页数:7
相关论文
共 18 条
  • [1] America National Standard Institute, 1998, PUBL KEY CRYPT FIN S
  • [2] [Anonymous], CORRELATION CENTRALI, DOI DOI 10.1002/9780470089941.ET0204S02
  • [3] LOW COMPLEXITY NORMAL BASES
    ASH, DW
    BLAKE, IF
    VANSTONE, SA
    [J]. DISCRETE APPLIED MATHEMATICS, 1989, 25 (03) : 191 - 210
  • [4] Low-Complexity Multiplier Architectures for Single and Hybrid-Double Multiplications in Gaussian Normal Bases
    Azarderakhsh, Reza
    Reyhani-Masoleh, Arash
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2013, 62 (04) : 744 - 757
  • [5] Azarderakhsh R, 2010, LECT NOTES COMPUT SC, V6087, P25, DOI 10.1007/978-3-642-13797-6_3
  • [6] Blake I.F., 1998, HPL98134
  • [7] Self-Checking Gaussian Normal Basis Multiplier over GF(2m) Using Multiplexer Approach
    Chiou, Che Wun
    Lin, Jim-Min
    Chang, Hung Wei
    Liang, Wen-Yew
    Wang, Jenq-Haur
    Yeh, Yun-Chi
    [J]. 2012 SIXTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTING (ICGEC), 2012, : 505 - 508
  • [8] Concurrent Error Detection and Correction in Gaussian Normal Basis Multiplier over GF(2m)
    Chiou, Che Wun
    Chang, Chin-Cheng
    Lee, Chiou-Yng
    Hou, Ting-Wei
    Lin, Jim-Min
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2009, 58 (06) : 851 - 857
  • [9] A new approach to subquadratic space complexity parallel multipliers for extended binary fields
    Fan, Haining
    Hasan, M. Anwar
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2007, 56 (02) : 224 - 233
  • [10] IEEE, 2000, IEEE STAND SPEC PUBL, P1363