Self-compression of a high-intensity laser pulse in a double-ionizing gas

被引:0
|
作者
Jain, Arohi [1 ]
Gupta, Devki Nandan [1 ]
Kumar, Saurabh [1 ]
机构
[1] Univ Delhi, Dept Phys & Astrophys, Delhi 110007, India
关键词
ELECTRON ACCELERATION; INHOMOGENEOUS-PLASMA; IONIZATION; GENERATION; CONVERSION; RADIATION; FIELD;
D O I
10.1063/5.0078369
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The self-compression and spatiotemporal evolution of a Gaussian laser pulse propagating in a double-ionized helium gas are investigated. The numerical model is formulated by solving the nonlinear Schrodinger equation using the paraxial like approach. The beam width parameter and pulse width parameter are estimated to investigate the laser pulse advancement in a tunnel ionizing gas. Transverse focusing and longitudinal compression are examined by characterizing the beam spot size in space and time, incorporating the gas ionization processes, relativistic mass variation, and ponderomotive effects. The results show that the inclusion of laser-induced double ionization of helium gas modifies the plasma density, which significantly affects the laser pulse evolution. For intense laser pulse, relativistic-ponderomotive nonlinearity enhances the pulse compression and consequently the self-focusing of the laser pulse. The compression mechanism and the localization of the pulse intensity both are boosted by the modified electron density via a dielectric function. At a helium gas pressure of 1.4 bar, we observed that 100 fs long laser pulse with intensity I-0 = 8.5 x 10(16) W/cm(2) is compressed to 20 fs and the initial laser spot size 10 mu m focused to 2 mu m. These results promise to be a method for the generation of table-top light sources for ultrafast high-field physics and advanced optics.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Relativistic laser pulse focusing and self-compression in stratified plasma-vacuum systems
    Karle, Ch.
    Spatschek, K. H.
    PHYSICS OF PLASMAS, 2008, 15 (12)
  • [32] Plasma Induced Pulse Breaking in Filamentary Self-Compression
    Bree, C.
    Demircan, A.
    Skupin, S.
    Berge, L.
    Steinmeyer, G.
    LASER PHYSICS, 2010, 20 (05) : 1107 - 1113
  • [33] Deceleration and Self-Compression of a Wave Pulse in a Discrete Medium
    A. G. Litvak
    V. A. Mironov
    L. A. Smirnov
    A. O. Sofonov
    Radiophysics and Quantum Electronics, 2023, 65 : 783 - 800
  • [34] Deceleration and Self-Compression of a Wave Pulse in a Discrete Medium
    Litvak, A. G.
    Mironov, V. A.
    Smirnov, L. A.
    Sofonov, A. O.
    RADIOPHYSICS AND QUANTUM ELECTRONICS, 2023, 65 (10) : 783 - 800
  • [35] Filamentary pulse self-compression: The impact of the cell windows
    Bree, Carsten
    Demircan, Ayhan
    Bethge, Jens
    Nibbering, Erik T. J.
    Skupin, Stefan
    Berge, Luc
    Steinmeyer, Gunter
    PHYSICAL REVIEW A, 2011, 83 (04):
  • [36] Pulse self-compression in temperature gradient controlled filamentation
    Kong W.
    Cao S.
    Pang D.
    Chai L.
    Wang Q.
    Zhang Z.
    Guangxue Xuebao/Acta Optica Sinica, 2010, 30 (01): : 299 - 303
  • [37] Pulse self-compression in normally dispersive bulk media
    Chen, XW
    Leng, YX
    Liu, J
    Zhu, Y
    Li, RX
    Xu, ZZ
    OPTICS COMMUNICATIONS, 2006, 259 (01) : 331 - 335
  • [38] Self-compression of optical laser pulses by filamentation
    Mysyrowicz, A.
    Couairon, A.
    Keller, U.
    NEW JOURNAL OF PHYSICS, 2008, 10
  • [39] Compression of high intensity laser pulse by inhomogeneous plasma
    Andreev, AA
    Bespalov, VG
    Ermolaev, EV
    Salomaa, R
    LASER OPTICS 2003: SUPERINTENSE LIGHT FIELDS AND ULTRAFAST PROCESSES, 2003, 5482 : 124 - 135
  • [40] High-intensity double-pulse X-ray free-electron laser
    A. Marinelli
    D. Ratner
    A.A. Lutman
    J. Turner
    J. Welch
    F.-J. Decker
    H. Loos
    C. Behrens
    S. Gilevich
    A.A. Miahnahri
    S. Vetter
    T.J. Maxwell
    Y. Ding
    R. Coffee
    S. Wakatsuki
    Z. Huang
    Nature Communications, 6