Lung nodule detection in low-dose and thin-slice computed tomography

被引:73
|
作者
Retico, A. [1 ]
Delogu, P. [1 ,2 ]
Fantacci, M. E. [1 ,2 ]
Gori, I. [1 ,3 ]
Martinez, A. Preite [4 ]
机构
[1] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy
[2] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[3] Bracco Imaging SpA, I-20134 Milan, Italy
[4] Ctr Studi & Ric Enrico Fermi, I-00184 Rome, Italy
关键词
computer-aided detection (CAD); low-dose computed tomography (LDCT); thin-slice CT; image processing;
D O I
10.1016/j.compbiomed.2008.02.001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A computer-aided detection (CAD) system for the identification of small pulmonary nodules in low-dose and thin-slice CT scans has been developed. The automated procedure for selecting the nodule candidates is mainly based on a filter enhancing spherical-shaped objects. A neural approach based on the classification of each single voxel of a nodule candidate has been purposely developed and implemented to reduce the amount of false-positive findings per scan. The CAD system has been trained to be sensitive to small internal and sub-pleural pulmonary nodules collected in a database of low-dose and thin-slice CT scans. The system performance has been evaluated on a data set of 39 CT containing 75 internal and 27 sub-pleural nodules. The FROC curve obtained on this data set shows high values of sensitivity to lung nodules (80-85% range) at an acceptable level of false positive findings per patient (10-13 FP/scan). (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:525 / 534
页数:10
相关论文
共 50 条
  • [1] Pleural nodule identification in low-dose and thin-slice lung computed tomography
    Retico, A.
    Fantacci, M. E.
    Gori, I.
    Kasae, P.
    Golosio, B.
    Piccioli, A.
    Cerello, P.
    De Nunzio, G.
    Tangaro, S.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2009, 39 (12) : 1137 - 1144
  • [2] An automated system for lung nodule detection in low-dose computed tomography
    Gori, I.
    Fantacci, M. E.
    Martinez, A. Preite
    Retico, A.
    MEDICAL IMAGING 2007: COMPUTER-AIDED DIAGNOSIS, PTS 1 AND 2, 2007, 6514
  • [3] Investigation of lung nodule detectability in low-dose 320-slice computed tomography
    Silverman, J. D.
    Paul, N. S.
    Siewerdsen, J. H.
    MEDICAL PHYSICS, 2009, 36 (05) : 1700 - 1710
  • [4] Increased transparency in thin-slice computed tomography of lung parenchyma
    Ley-Zaporozhan, J.
    RADIOLOGE, 2011, 51 (10): : 881 - 894
  • [5] Accuracy of thin-slice computed tomography in the detection of coronary stenoses
    Martuscelli, E
    Romagnoli, A
    D'Eliseo, A
    Razzini, C
    Tomassini, M
    Sperandio, M
    Simonetti, G
    Romeo, F
    EUROPEAN HEART JOURNAL, 2004, 25 (12) : 1043 - 1048
  • [6] Radiographic diagnosis of Pneumoconioses by AIR Pneumo-trained physicians: Comparison with low-dose thin-slice computed tomography
    Nogami, Shoko
    Awn, Naw J-P
    Nogami, Munenobu
    Matsui, Tomomi
    Ngatu, Nlandu Roger
    Tamura, Taro
    Kusaka, Yukinori
    Itoh, Harumi
    Suganuma, Narufumi
    JOURNAL OF OCCUPATIONAL HEALTH, 2020, 62 (01)
  • [7] Screening for lung cancer using thin-slice low-dose computed tomography in southwestern China: a population-based real-world study
    Wu, Jiaxuan
    Li, Ruicen
    Zhang, Huohuo
    Zheng, Qian
    Tao, Wenjuan
    Yang, Ming
    Zhu, Yuan
    Ji, Guiyi
    Li, Weimin
    THORACIC CANCER, 2024, 15 (19) : 1522 - 1532
  • [8] Radiomic-Based Lung Nodule Classification in Low-Dose Computed Tomography
    Wojciech, Prazuch
    Jelitto-Gorska, Malgorzata
    Durawa, Agata
    Dziadziuszko, Katarzyna
    Polanska, Joanna
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING, PT I, 2022, : 357 - 363
  • [9] Automated detection of lung nodules in low-dose computed tomography
    Cascio, D.
    Cheran, S. C.
    Chincarini, A.
    De Nunzio, G.
    Delogu, P.
    Fantacci, M. E.
    Gargano, G.
    Gori, I.
    Masala, G. L.
    Martinez, A. Preite
    Retico, A.
    Santoro, M.
    Spinelli, C.
    Tarantino, T.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2007, 2 : S357 - S359
  • [10] The use of contrast for automated pulmonary nodule detection in low-dose computed tomography
    Narayan, TK
    Herman, GT
    MEDICAL PHYSICS, 1999, 26 (03) : 427 - 437