Graph-Based Semisupervised Learning With Weighted Features for Hyperspectral Remote Sensing Image Classification

被引:2
|
作者
Wang, Qingyan [1 ]
Zhang, Qi [1 ]
Zhang, Junping [2 ]
Kang, Shouqiang [1 ]
Wang, Yujing [1 ]
机构
[1] Harbin Univ Sci & Technol, Sch Measurement Control & Commun Engn, Harbin 150080, Peoples R China
[2] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Merging; Data mining; Convolution; Hyperspectral imaging; Generative adversarial networks; Decoding; Convolutional neural network (CNN); graph with weighted features; hyperspectral image classification; stacked autoencoder; NETWORKS;
D O I
10.1109/JSTARS.2022.3195639
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Graph neural network has an excellent performance in obtaining the similarity relationship of samples, so it has been widely used in computer vision. But the hyperspectral remote sensing image (HSI) has some problems, such as data redundancy, noise, lack of labeled samples, and insufficient utilization of spatial information. These problems affect the accuracy of HSI classification using graph neural networks. To solve the aforementioned problems, this article proposes graph-based semisupervised learning with weighted features for HSI classification. The method proposed in this article first uses the stacked autoencoder network to extract features, which is used to remove the redundancy of HSI data. Then, the similarity attenuation coefficient is introduced to improve the original feature weighting scheme. In this way, the contribution difference of adjacent pixels to the center pixel is reflected. Finally, to obtain more generalized spectral features, a shallow feature extraction mechanism is added to the stacked autoencoder network. And features that have good generalization can solve the problem of the lack of labeled samples. The experiment on three different types of datasets demonstrates that the proposed method in this article can get better classification performance in the case of the scarcity of labeled samples than other classification methods.
引用
收藏
页码:6356 / 6370
页数:15
相关论文
共 50 条
  • [21] Hyperspectral Image Classification Based on Double-Hop Graph Attention Multiview Fusion Network
    Cui, Ying
    Luo, Li
    Wang, Lu
    Chen, Liwei
    Gao, Shan
    Zhao, Chunhui
    Tang, Cheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 20080 - 20097
  • [22] Graph-Based Semantic Embedding Refinement for Zero-Shot Remote Sensing Image Scene Classification
    Shang, Junyuan
    Niu, Chang
    Zhou, Wenlve
    Zhou, Zhiheng
    Yang, Junmei
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (01) : 644 - 657
  • [23] Semi-supervised graph-based hyperspectral image classification
    Camps-Valls, Gustavo
    Bandos, Tatyana V.
    Zhou, Dengyong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10): : 3044 - 3054
  • [24] Superpixel-Based Semisupervised Active Learning for Hyperspectral Image Classification
    Liu, Chenying
    Li, Jun
    He, Lin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (01) : 357 - 370
  • [25] Knowledge Graph-Guided Deep Network for Hyperspectral Remote Sensing Image Classification
    Tang, Ruijie
    Ma, Li
    Li, Yansheng
    Du, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [26] Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network
    Lei, Runmin
    Zhang, Chunju
    Liu, Wencong
    Zhang, Lei
    Zhang, Xueying
    Yang, Yucheng
    Huang, Jianwei
    Li, Zhenxuan
    Zhou, Zhiyi
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 8297 - 8315
  • [27] Hyperspectral Remote Sensing Image Classification With CNN Based on Quantum Genetic-Optimized Sparse Representation
    Chen, Huayue
    Miao, Fang
    Shen, Xu
    IEEE ACCESS, 2020, 8 : 99900 - 99909
  • [28] Semisupervised Self-Learning for Hyperspectral Image Classification
    Dopido, Inmaculada
    Li, Jun
    Marpu, Prashanth Reddy
    Plaza, Antonio
    Bioucas Dias, Jose M.
    Benediktsson, Jon Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (07): : 4032 - 4044
  • [29] Semisupervised Discriminative Random Field for Hyperspectral Image Classification
    Liang, Bingkun
    Liu, Chenying
    Li, Jun
    Plaza, Antonio
    Bioucas-Dias, Jose M.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 (14) : 12403 - 12414
  • [30] Spectral-spatial classification of hyperspectral remote sensing image based on capsule network
    Jia, Sen
    Zhao, Baojun
    Tang, Linbo
    Feng, Fan
    Wang, WenZheng
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (21): : 7352 - 7355