Performance of Machine Learning Algorithms for Predicting Progression to Dementia in Memory Clinic Patients

被引:73
作者
James, Charlotte [1 ,2 ]
Ranson, Janice M. [1 ,2 ]
Everson, Richard [2 ,3 ,4 ]
Llewellyn, David J. [1 ,2 ,4 ]
机构
[1] Univ Exeter, Med Sch, Veysey Bldg,Coll House,St Lukes Campus, Exeter EX2 45G, Devon, England
[2] Deep Dementia Phenotyping Network, Exeter, Devon, England
[3] Univ Exeter, Dept Comp Sci, Exeter, Devon, England
[4] Alan Turing Inst, London, England
基金
美国国家卫生研究院; 英国医学研究理事会; 英国工程与自然科学研究理事会;
关键词
MILD COGNITIVE IMPAIRMENT; DATA SET UDS; ALZHEIMERS-DISEASE; VALIDATION; DIAGNOSIS;
D O I
10.1001/jamanetworkopen.2021.36553
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
IMPORTANCE Machine learning algorithms could be used as the basis for clinical decision-making aids to enhance clinical practice. OBJECTIVE To assess the ability of machine learning algorithms to predict dementia incidence within 2 years compared with existing models and determine the optimal analytic approach and number of variables required. DESIGN, SETTING, AND PARTICIPANTS This prognostic study used data from a prospective cohort of 15 307 participants without dementia at baseline to perform a secondary analysis of factors that could be used to predict dementia incidence. Participants attended National Alzheimer Coordinating Center memory clinics across the United States between 2005 and 2015. Analyses were conducted from March to May 2021. EXPOSURES 258 variables spanning domains of dementia-related clinical measures and risk factors. MAIN OUTCOMES AND MEASURES The main outcome was incident all-cause dementia diagnosed within 2 years of baseline assessment. RESULTS In a sample of 15 307 participants (mean [SD] age, 72.3 [9.8] years; 9129 [60%] women and 6178 [40%] men) without dementia at baseline, 1568 (10%) received a diagnosis of dementia within 2 years of their initial assessment. Compared with 2 existing models for dementia risk prediction (ie, Cardiovascular Risk Factors, Aging, and Incidence of Dementia Risk Score, and the Brief Dementia Screening Indicator), machine learning algorithms were superior in predicting incident all-cause dementia within 2 years. The gradient-boosted trees algorithm had a mean (SD) overall accuracy of 92%(1%), sensitivity of 0.45 (0.05), specificity of 0.97 (0.01), and area under the curve of 0.92 (0.01) using all 258 variables. Analysis of variable importance showed that only 6 variables were required for machine learning algorithms to achieve an accuracy of 91% and area under the curve of at least 0.89. Machine learning algorithms also identified up to 84% of participants who received an initial dementia diagnosis that was subsequently reversed to mild cognitive impairment or cognitively unimpaired, suggesting possible misdiagnosis. CONCLUSIONS AND RELEVANCE These findings suggest that machine learning algorithms could accurately predict incident dementia within 2 years in patients receiving care at memory clinics using only 6 variables. These findings could be used to inform the development and validation of decision-making aids in memory clinics.
引用
收藏
页数:11
相关论文
共 37 条
[21]   Big Data Analytical Approaches to the NACC Dataset: Aiding Preclinical Trial Enrichment [J].
Lin, Ming ;
Gong, Pinghua ;
Yang, Tao ;
Ye, Jieping ;
Albin, Roger L. ;
Dodge, Hiroko H. .
ALZHEIMER DISEASE & ASSOCIATED DISORDERS, 2018, 32 (01) :18-27
[22]   UNIFIED PARKINSONS-DISEASE RATING-SCALE CHARACTERISTICS AND STRUCTURE [J].
MARTINEZMARTIN, P ;
GILNAGEL, A ;
GRACIA, LM ;
GOMEZ, JB ;
MARTINEZSARRIES, J ;
BERMEJO, F ;
MACIAS, MC ;
JIMENEZROJAS, C ;
MARANON, E ;
VECIANA, JMG ;
ARNALL, CR ;
BRUNA, O ;
PLAJA, CJ ;
GIMENEZROLDAN, S ;
BURGUERA, JA .
MOVEMENT DISORDERS, 1994, 9 (01) :76-83
[23]   Diagnosis and management of dementia with Lewy bodies - Third report of the DLB consortium [J].
McKeith, IG ;
Dickson, DW ;
Lowe, J ;
Emre, M ;
O'Brien, JT ;
Feldman, H ;
Cummings, J ;
Duda, JE ;
Lippa, C ;
Perry, EK ;
Aarsland, D ;
Arai, H ;
Ballard, CG ;
Boeve, B ;
Burn, DJ ;
Costa, D ;
Del Ser, T ;
Dubois, B ;
Galasko, D ;
Gauthier, S ;
Goetz, CG ;
Gomez-Tortosa, E ;
Halliday, G ;
Hansen, LA ;
Hardy, J ;
Iwatsubo, T ;
Kalaria, RN ;
Kaufer, D ;
Kenny, RA ;
Korczyn, A ;
Kosaka, K ;
Lee, VMY ;
Lees, A ;
Litvan, I ;
Londos, E ;
Lopez, OL ;
Minoshima, S ;
Mizuno, Y ;
Molina, JA ;
Mukaetova-Ladinska, EB ;
Pasquier, F ;
Perry, RH ;
Schulz, JB ;
Trojanowski, JQ ;
Yamada, M .
NEUROLOGY, 2005, 65 (12) :1863-1872
[24]  
MCKHANN G, 1984, NEUROLOGY, V34, P939, DOI 10.1212/WNL.34.7.939
[25]   Rate of progression of mild cognitive impairment to dementia - meta-analysis of 41 robust inception cohort studies [J].
Mitchell, A. J. ;
Shiri-Feshki, M. .
ACTA PSYCHIATRICA SCANDINAVICA, 2009, 119 (04) :252-265
[26]  
Morris J C, 1997, Int Psychogeriatr, V9 Suppl 1, P173, DOI 10.1017/S1041610297004870
[27]   The uniform data set (UDS): Clinical and cognitive variables and descriptive data from Alzheimer disease centers [J].
Morris, John C. ;
Weintraub, Sandra ;
Chui, Helena C. ;
Cummings, Jeffrey ;
DeCarli, Charles ;
Ferris, Steven ;
Foster, Norman L. ;
Galasko, Douglas ;
Graff-Radford, Neill ;
Peskind, Elaine R. ;
Beekly, Duane ;
Ramos, Erin M. ;
Kukull, Walter A. .
ALZHEIMER DISEASE & ASSOCIATED DISORDERS, 2006, 20 (04) :210-216
[28]   Frontotemporal lobar degeneration - A consensus on clinical diagnostic criteria [J].
Neary, D ;
Snowden, JS ;
Gustafson, L ;
Passant, U ;
Stuss, D ;
Black, S ;
Freedman, M ;
Kertesz, A ;
Robert, PH ;
Albert, M ;
Boone, K ;
Miller, BL ;
Cummings, J ;
Benson, DF .
NEUROLOGY, 1998, 51 (06) :1546-1554
[29]   Machine learning prediction of incidence of Alzheimer's disease using large-scale administrative health data [J].
Park, Ji Hwan ;
Cho, Han Eol ;
Kim, Jong Hun ;
Wall, Melanie M. ;
Stern, Yaakov ;
Lim, Hyunsun ;
Yoo, Shinjae ;
Kim, Hyoung Seop ;
Cha, Jiook .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[30]  
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825