Unsupervised Spectral-Spatial Semantic Feature Learning for Hyperspectral Image Classification

被引:34
作者
Xu, Huilin [1 ]
He, Wei [1 ]
Zhang, Liangpei [1 ]
Zhang, Hongyan [1 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Semantics; Representation learning; Iron; Image reconstruction; Task analysis; Training; Deep learning; high-level semantic; hyperspectral image (HSI) classification; unsupervised feature learning; DIMENSIONALITY REDUCTION; FEATURE-EXTRACTION; NETWORKS;
D O I
10.1109/TGRS.2022.3159789
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Can we automatically learn meaningful semantic feature representations when training labels are absent? Several recent unsupervised deep learning approaches have attempted to tackle this problem by solving the data reconstruction task. However, these methods can easily latch on low-level features. To solve this problem, we propose an end-to-end spectral-spatial semantic feature learning network (S3FN) for unsupervised deep semantic feature extraction (FE) from hyperspectral images (HSIs). Our main idea is to learn spectral-spatial features from high-level semantic perspective. First, we utilize the feature transformation to obtain two feature descriptions of the same source data from different views. Then, we propose the spectral-spatial feature learning network to project the two feature descriptions into the deep embedding space. Subsequently, a contrastive loss function is introduced to align the two projected features, which should have the same implied semantic meaning. The proposed S3FN learns the spectral and spatial features separately, and then merges them. Finally, the learned spectral-spatial features by S3FN are processed by a classifier to evaluate their effectiveness. Experimental results on three publicly available HSI datasets show that our proposed S3FN can produce promising classification results with a lower time cost than other state-of-the-art (SOTA) deep learning-based unsupervised FE methods.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Unsupervised Spatial-Spectral CNN-Based Feature Learning for Hyperspectral Image Classification
    Zhang, Shuyu
    Xu, Meng
    Zhou, Jun
    Jia, Sen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] Masked Spectral-Spatial Feature Prediction for Hyperspectral Image Classification
    Zhou, Feng
    Xu, Chao
    Yang, Guowei
    Hang, Renlong
    Liu, Qingshan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 13
  • [3] Spectral-Spatial Masked Transformer With Supervised and Contrastive Learning for Hyperspectral Image Classification
    Huang, Lingbo
    Chen, Yushi
    He, Xin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [4] Spectral-Spatial Discriminant Feature Learning for Hyperspectral Image Classification
    Dong, Chunhua
    Naghedolfeizi, Masoud
    Aberra, Dawit
    Zeng, Xiangyan
    REMOTE SENSING, 2019, 11 (13)
  • [5] Extreme Learning Machine With Enhanced Composite Feature for Spectral-Spatial Hyperspectral Image Classification
    Jiang, Mengying
    Cao, Faxian
    Lu, Yunmeng
    IEEE ACCESS, 2018, 6 : 22645 - 22654
  • [6] Unsupervised Spectral-Spatial Feature Extraction With Generalized Autoencoder for Hyperspectral Imagery
    Koda, Satoru
    Melgani, Farid
    Nishii, Ryuei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (03) : 469 - 473
  • [7] Life-Long Learning With Continual Spectral-Spatial Feature Distillation for Hyperspectral Image Classification
    Zhao, Wenzhi
    Peng, Rui
    Wang, Qiao
    Cheng, Changxiu
    Emery, William J.
    Zhang, Liqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [8] Spectral-Spatial Response for Hyperspectral Image Classification
    Wei, Yantao
    Zhou, Yicong
    Li, Hong
    REMOTE SENSING, 2017, 9 (03):
  • [9] A Multiview Spectral-Spatial Feature Extraction and Fusion Framework for Hyperspectral Image Classification
    Feng, Jia
    Zhang, Junping
    Zhang, Ye
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [10] Spectral-Spatial Feature Extraction With Dual Graph Autoencoder for Hyperspectral Image Clustering
    Zhang, Yongshan
    Wang, Yang
    Chen, Xiaohong
    Jiang, Xinwei
    Zhou, Yicong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8500 - 8511