Uncertainty-Aware Semantic Augmentation for Neural Machine Translation

被引:0
作者
Wei, Xiangpeng [1 ,2 ]
Yu, Heng [3 ]
Hu, Yue [1 ,2 ]
Weng, Rongxiang [3 ]
Xing, Luxi [1 ,2 ]
Luo, Weihua [3 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
[3] Alibaba Grp, Machine Intelligence Technol Lab, Hangzhou, Peoples R China
来源
PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP) | 2020年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As a sequence-to-sequence generation task, neural machine translation (NMT) naturally contains intrinsic uncertainty, where a single sentence in one language has multiple valid counterparts in the other. However, the dominant methods for NMT only observe one of them from the parallel corpora for the model training but have to deal with adequate variations under the same meaning at inference. This leads to a discrepancy of the data distribution between the training and the inference phases. To address this problem, we propose uncertainty-aware semantic augmentation, which explicitly captures the universal semantic information among multiple semantically-equivalent source sentences and enhances the hidden representations with this information for better translations. Extensive experiments on various translation tasks reveal that our approach significantly outperforms the strong baselines and the existing methods.
引用
收藏
页码:2724 / 2735
页数:12
相关论文
共 50 条
[41]   Uncertainty-Aware Multidimensional Scaling [J].
Hagele D. ;
Krake T. ;
Weiskopf D. .
IEEE Transactions on Visualization and Computer Graphics, 2023, 29 (01) :23-32
[42]   Uncertainty-Aware Anticipation of Activities [J].
Abu Farha, Yazan ;
Gall, Juergen .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :1197-1204
[43]   Uncertainty-aware circuit optimization [J].
Bai, XL ;
Visweswariah, C ;
Strenski, PN ;
Hathaway, DJ .
39TH DESIGN AUTOMATION CONFERENCE, PROCEEDINGS 2002, 2002, :58-63
[44]   Uncertainty-Aware Image Captioning [J].
Fei, Zhengcong ;
Fan, Mingyuan ;
Zhu, Li ;
Huang, Junshi ;
Wei, Xiaoming ;
Wei, Xiaolin .
THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1, 2023, :614-622
[45]   Analyzing Uncertainty in Neural Machine Translation [J].
Ott, Myle ;
Auli, Michael ;
Grangier, David ;
Ranzato, Marc'Aurelio .
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
[46]   Uncertainty-aware Situational Understanding [J].
Tomsett, Richard ;
Kaplan, Lance ;
Cerutti, Federico ;
Sullivan, Paul ;
Vente, Daniel ;
Vilamala, Marc Roig ;
Kimmig, Angelika ;
Preece, Alun ;
Sensoy, Murat .
ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS, 2019, 11006
[47]   Uncertainty-aware network alignment [J].
Zhou, Fan ;
Li, Ce ;
Wen, Zijing ;
Zhong, Ting ;
Trajcevski, Goce ;
Khokhar, Ashfaq .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (12) :7895-7924
[48]   An Uncertainty-Aware Transformer for MRI Cardiac Semantic Segmentation via Mean Teachers [J].
Wang, Ziyang ;
Zheng, Jian-Qing ;
Voiculescu, Irina .
MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, MIUA 2022, 2022, 13413 :494-507
[49]   Uncertainty-Aware Panoptic Segmentation [J].
Sirohi, Kshitij ;
Marvi, Sajad ;
Buescher, Daniel ;
Burgard, Wolfram .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (05) :2629-2636
[50]   Uncertainty-aware Ramachandran Plots [J].
Maack, Robin G. C. ;
Hagen, Hans ;
Gillmann, Christina .
2019 IEEE PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS 2019), 2019, :227-231