MULTIVARIATE SIGNAL DENOISING BASED ON GENERIC MULTIVARIATE DETRENDED FLUCTUATION ANALYSIS

被引:6
作者
Naveed, Khuram [1 ]
Mukhtar, Sidra [1 ]
Rehman, Naveed ur [2 ]
机构
[1] COMSAIS Univ Islamabad CUI, Dept Elect & Comp Engn, Islamabad, Pakistan
[2] Aarhus Univ, Dept Elect & Comp Engn, Aarhus, Denmark
来源
2021 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP) | 2021年
关键词
Multivariate signals; Detrended fluctuation Analysis; Multivariate variational mode decomposition; VARIATIONAL MODE DECOMPOSITION;
D O I
10.1109/SSP49050.2021.9513823
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a novel multivariate signal denoising method that performs long-range correlation analysis of multiple modes in input data by considering inherent inter-channel dependencies of the data. That is achieved through a novel and generic multivariate extension of detrended fluctuation analysis (DFA) method - another contribution of this paper. Specifically, our proposed denoising method first obtains data driven multiscale signal representation using multivariate variational mode decomposition (MVMD) method. Then, the proposed generic multivariate DFA is used to reject the predominantly noisy modes based on their randomness scores. Finally, the denoised signal is reconstructed by summing the remaining modes albeit after the removal of the noise traces using the principal component analysis (PCA).
引用
收藏
页码:441 / 445
页数:5
相关论文
共 24 条
  • [1] A Class of Multivariate Denoising Algorithms Based on Synchrosqueezing
    Ahrabian, Alireza
    Mandic, Danilo P.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (09) : 2196 - 2208
  • [2] Multivariate denoising using wavelets and principal component analysis
    Aminghafari, M
    Cheze, N
    Poggi, JM
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (09) : 2381 - 2398
  • [3] Multichannel Signal Denoising Using Multivariate Variational Mode Decomposition With Subspace Projection
    Cao, Peipei
    Wang, Huali
    Zhou, Kaijie
    [J]. IEEE ACCESS, 2020, 8 : 74039 - 74047
  • [4] DONOHO DL, 1995, J ROY STAT SOC B MET, V57, P301
  • [5] Variational Mode Decomposition
    Dragomiretskiy, Konstantin
    Zosso, Dominique
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (03) : 531 - 544
  • [6] A joint framework for multivariate signal denoising using multivariate empirical mode decomposition
    Hao, Huan
    Wang, H. L.
    Rehman, N. U.
    [J]. SIGNAL PROCESSING, 2017, 135 : 263 - 273
  • [7] Detecting long-range correlations with detrended fluctuation analysis
    Kantelhardt, JW
    Koscielny-Bunde, E
    Rego, HHA
    Havlin, S
    Bunde, A
    [J]. PHYSICA A, 2001, 295 (3-4): : 441 - 454
  • [8] A simple rule for the selection of principal components
    Karlis, D
    Saporta, G
    Spinakis, A
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2003, 32 (03) : 643 - 666
  • [9] Development of EMD-Based Denoising Methods Inspired by Wavelet Thresholding
    Kopsinis, Yannis
    McLaughlin, Stephen
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (04) : 1351 - 1362
  • [10] Characterization of the sleep EEG in acutely depressed men using detrended fluctuation analysis
    Leistedt, S.
    Dumont, M.
    Lanquart, J.-P.
    Jurysta, F.
    Linkowski, P.
    [J]. CLINICAL NEUROPHYSIOLOGY, 2007, 118 (04) : 940 - 950