Thermally driven non-contact atomic force microscopy

被引:31
|
作者
Gannepalli, A [1 ]
Sebastian, A
Cleveland, J
Salapaka, M
机构
[1] Iowa State Univ, Dept Elect & Comp Engn, NanoDynam Syst Lab, Ames, IA 50011 USA
[2] Asylum Res, Santa Barbara, CA 93117 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2037197
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this letter a thermally driven frequency modulated atomic force microscopy (FM-AFM) technique is developed. Thermal fluctuations of the cantilever are employed to estimate the cantilever's equivalent resonant frequency. The corresponding cantilever oscillations are the smallest possible at a given temperature. Related experiments that establish the feasibility of thermally driven FM-AFM in ambient room conditions have achieved tip-sample separations less than 2 nm with long term separation stability (> 30 min). Employing this method a narrowband 250 Hz modulation of the tip-sample separation was detected with a vertical resolution of 0.25 angstrom in a 0.4 Hz bandwidth. The corresponding estimated force sensitivity is 7 fN. In all experiments the cantilever tip was maintained in the attractive regime of the tip-sample interactions. This demonstrates a thermally driven non-contact mode operation of AFM. It also provides a limits of performance study of small amplitude FM-AFM methods. (c) 2005 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Energy Dissipation Mechanism of Non-Contact Atomic Force Microscopy for Movable Objects
    Harada, Masanori
    Tsukada, Masaru
    E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY, 2008, 6 : 1 - 6
  • [32] Studies to identify heteroatoms in aromatic molecules with non-contact atomic force microscopy
    Zhang, Yunlong
    Zahl, Percy
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [33] Non-Contact Atomic Force Microscopy and Scanning Tunneling Microscopy of Coexisting Reconstructions on Si(111)
    Rose, Franck
    Ishii, Takanori
    Kawai, Shigeki
    Kawakatsu, Hideki
    E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY, 2005, 3 : 258 - 262
  • [34] Atom tracking for reproducible force spectroscopy at room temperature with non-contact atomic force microscopy
    Abe, M
    Sugimoto, Y
    Custance, O
    Morita, S
    NANOTECHNOLOGY, 2005, 16 (12) : 3029 - 3034
  • [35] Non-contact bimodal magnetic force microscopy
    Schwenk, J.
    Marioni, M.
    Romer, S.
    Joshi, N. R.
    Hug, H. J.
    APPLIED PHYSICS LETTERS, 2014, 104 (11)
  • [36] Theoretical simulation of non-contact atomic force microscopy imaging of the α-alumina(0001) surface
    Gal, AY
    Shluger, AL
    NANOTECHNOLOGY, 2004, 15 (02) : S108 - S114
  • [37] Anchoring of a dye precursor on NiO(001) studied by non-contact atomic force microscopy
    Freund, Sara
    Hinaut, Antoine
    Marinakis, Nathalie
    Constable, Edwin C.
    Meyer, Ernst
    Housecroft, Catherine E.
    Glatzel, Thilo
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2018, 9 : 242 - 249
  • [38] Quantum theory of energy dissipation in non-contact atomic force microscopy in Markovian approximation
    Kantorovich, LN
    SURFACE SCIENCE, 2002, 521 (03) : 117 - 128
  • [39] Modelling of non-contact atomic force microscopy imaging of individual molecules on oxide surfaces
    Sushko, M. L.
    Gal, A. Y.
    Watkins, M.
    Shluger, A. L.
    NANOTECHNOLOGY, 2006, 17 (08) : 2062 - 2072
  • [40] A possibility of XANAM (X-ray aided non-contact atomic force microscopy)
    Suzuki, S
    Koike, Y
    Fujikawa, K
    Chun, WJ
    Nomura, M
    Asakura, K
    CHEMISTRY LETTERS, 2004, 33 (05) : 636 - 637