Thermally driven non-contact atomic force microscopy

被引:31
|
作者
Gannepalli, A [1 ]
Sebastian, A
Cleveland, J
Salapaka, M
机构
[1] Iowa State Univ, Dept Elect & Comp Engn, NanoDynam Syst Lab, Ames, IA 50011 USA
[2] Asylum Res, Santa Barbara, CA 93117 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2037197
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this letter a thermally driven frequency modulated atomic force microscopy (FM-AFM) technique is developed. Thermal fluctuations of the cantilever are employed to estimate the cantilever's equivalent resonant frequency. The corresponding cantilever oscillations are the smallest possible at a given temperature. Related experiments that establish the feasibility of thermally driven FM-AFM in ambient room conditions have achieved tip-sample separations less than 2 nm with long term separation stability (> 30 min). Employing this method a narrowband 250 Hz modulation of the tip-sample separation was detected with a vertical resolution of 0.25 angstrom in a 0.4 Hz bandwidth. The corresponding estimated force sensitivity is 7 fN. In all experiments the cantilever tip was maintained in the attractive regime of the tip-sample interactions. This demonstrates a thermally driven non-contact mode operation of AFM. It also provides a limits of performance study of small amplitude FM-AFM methods. (c) 2005 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Adaptive semi-empirical model for non-contact atomic force microscopy
    陈曦
    童君开
    胡智鑫
    Chinese Physics B, 2022, (08) : 748 - 753
  • [22] Adaptive semi-empirical model for non-contact atomic force microscopy
    Chen, Xi
    Tong, Jun-Kai
    Hu, Zhi-Xin
    CHINESE PHYSICS B, 2022, 31 (08)
  • [23] Thermal noise response based static non-contact atomic force microscopy
    Gannepalli, A
    Sebastian, A
    Salapaka, MV
    Cleveland, JP
    NSTI NANOTECH 2004, VOL 3, TECHNICAL PROCEEDINGS, 2004, : 159 - 162
  • [24] Frequency shift and energy dissipation in non-contact atomic-force microscopy
    Ke, SH
    Uda, T
    Terakura, K
    APPLIED SURFACE SCIENCE, 2000, 157 (04) : 361 - 366
  • [25] Molecular structure of heavy oil revealed with non-contact atomic force microscopy
    Zhang, Yunlong
    Harper, Michael
    Kushnerick, Douglas
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [26] Imaging of Defects on Ge(001):H by Non-contact Atomic Force Microscopy
    Such, Bartosz
    Kolmer, Marek
    Godlewski, Szymon
    Lis, Jakub
    Budzioch, Janusz
    Wojtaszek, Mateusz
    Szymonski, Marek
    IMAGING AND MANIPULATION OF ADSORBATES USING DYNAMIC FORCE MICROSCOPY, 2015, : 111 - 118
  • [27] Acquisition of high-precision images for non-contact atomic force microscopy
    Pishkenari, Hossein Nejat
    Jalili, Nader
    Meghdari, Ali
    MECHATRONICS, 2006, 16 (10) : 655 - 664
  • [28] Observation of voltage contrast in non-contact resonant mode atomic force microscopy
    Girard, P
    Solal, GC
    Belaidi, S
    MICROELECTRONIC ENGINEERING, 1996, 31 (1-4) : 215 - 225
  • [29] Imaging in situ cleaved MgO(100) with non-contact atomic force microscopy
    Ashworth, TV
    Pang, CL
    Wincott, PL
    Vaughan, DJ
    Thornton, G
    APPLIED SURFACE SCIENCE, 2003, 210 (1-2) : 2 - 5
  • [30] Controlled deposition of gold nanodots using non-contact atomic force microscopy
    Pumarol, ME
    Miyahara, Y
    Gagnon, R
    Grütter, P
    NANOTECHNOLOGY, 2005, 16 (08) : 1083 - 1088