Multiple Kernel Learning for Hyperspectral Image Classification: A Review

被引:203
|
作者
Gu, Yanfeng [1 ]
Chanussot, Jocelyn [2 ]
Jia, Xiuping [3 ]
Benediktsson, Jon Atli [4 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Heilongjiang, Peoples R China
[2] Grenoble Inst Technol, F-38402 St Martin Dheres, France
[3] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
[4] Univ Iceland, Dept Elect & Comp Engn, IS-107 Reykjavik, Iceland
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2017年 / 55卷 / 11期
关键词
Classification; heterogeneous features; hyperspectral images (HSIs); multiple kernel learning (MKL); remote sensing; JOINT COLLABORATIVE REPRESENTATION; SPECTRAL-SPATIAL CLASSIFICATION; EMPIRICAL MODE DECOMPOSITION; SUPPORT VECTOR MACHINES; SPARSE REPRESENTATION; RANDOM FOREST; NEURAL-NETWORKS; FEATURE-EXTRACTION; COMPOSITE KERNELS; ANOMALY DETECTION;
D O I
10.1109/TGRS.2017.2729882
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
With the rapid development of spectral imaging techniques, classification of hyperspectral images (HSIs) has attracted great attention in various applications such as land survey and resource monitoring in the field of remote sensing. A key challenge in HSI classification is how to explore effective approaches to fully use the spatial-spectral information provided by the data cube. Multiple kernel learning (MKL) has been successfully applied to HSI classification due to its capacity to handle heterogeneous fusion of both spectral and spatial features. This approach can generate an adaptive kernel as an optimally weighted sum of a few fixed kernels to model a nonlinear data structure. In this way, the difficulty of kernel selection and the limitation of a fixed kernel can be alleviated. Various MKL algorithms have been developed in recent years, such as the general MKL, the subspace MKL, the nonlinear MKL, the sparse MKL, and the ensemble MKL. The goal of this paper is to provide a systematic review of MKL methods, which have been applied to HSI classification. We also analyze and evaluate different MKL algorithms and their respective characteristics in different cases of HSI classification cases. Finally, we discuss the future direction and trends of research in this area.
引用
收藏
页码:6547 / 6565
页数:19
相关论文
共 50 条
  • [41] Spectral and Spatial Kernel Extreme Learning Machine for Hyperspectral Image Classification
    Yang, Zhijing
    Cao, Faxian
    Zabalza, Jaime
    Chen, Weizhao
    Cao, Jiangzhong
    ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018, 2018, 10989 : 394 - 401
  • [42] Multiple Kernel Learning for Remote Sensing Image Classification
    Niazmardi, Saeid
    Demir, Begum
    Bruzzone, Lorenzo
    Safari, Abdolreza
    Homayouni, Saeid
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (03): : 1425 - 1443
  • [43] Hierarchical broad learning system for hyperspectral image classification
    Xiao, Guangrun
    Wei, Yantao
    Yao, Huang
    Deng, Wei
    Xu, Jiazhen
    Pan, Donghui
    IET IMAGE PROCESSING, 2022, 16 (02) : 554 - 566
  • [44] Semisupervised Classification for Hyperspectral Imagery With Transductive Multiple-Kernel Learning
    Sun, Zhuo
    Wang, Cheng
    Li, Dilong
    Li, Jonathan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (11) : 1991 - 1995
  • [45] Multiple 3-D Feature Fusion Framework for Hyperspectral Image Classification
    Zhu, Jiasong
    Hu, Jie
    Jia, Sen
    Jia, Xiuping
    Li, Qingquan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (04): : 1873 - 1886
  • [46] Deep Encoder With Kernel-Wise Taylor Series for Hyperspectral Image Classification
    Xing, Changda
    Zhao, Jianlong
    Duan, Chaowei
    Wang, Zhisheng
    Wang, Meiling
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [47] Hyperspectral image classification using multiple weighted local kernel matrix descriptors
    Beirami, Behnam Asghari
    Mokhtarzade, Mehdi
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (14) : 5280 - 5305
  • [48] Optimized weighted local kernel features for hyperspectral image classification
    Beirami, Behnam Asghari
    Mokhtarzade, Mehdi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (15) : 21859 - 21885
  • [49] New Kernel Function for Hyperspectral Image Classification
    Banki, Mohammad Hossein
    Shirazi, Ali Asghar Beheshti
    2010 2ND INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2010), VOL 1, 2010, : 780 - 783
  • [50] Kernel Weighted Joint Collaborative Representation for Hyperspectral Image Classification
    Du, Qian
    Li, Wei
    SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING XI, 2015, 9501