Multiple Kernel Learning for Hyperspectral Image Classification: A Review

被引:203
|
作者
Gu, Yanfeng [1 ]
Chanussot, Jocelyn [2 ]
Jia, Xiuping [3 ]
Benediktsson, Jon Atli [4 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Heilongjiang, Peoples R China
[2] Grenoble Inst Technol, F-38402 St Martin Dheres, France
[3] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
[4] Univ Iceland, Dept Elect & Comp Engn, IS-107 Reykjavik, Iceland
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2017年 / 55卷 / 11期
关键词
Classification; heterogeneous features; hyperspectral images (HSIs); multiple kernel learning (MKL); remote sensing; JOINT COLLABORATIVE REPRESENTATION; SPECTRAL-SPATIAL CLASSIFICATION; EMPIRICAL MODE DECOMPOSITION; SUPPORT VECTOR MACHINES; SPARSE REPRESENTATION; RANDOM FOREST; NEURAL-NETWORKS; FEATURE-EXTRACTION; COMPOSITE KERNELS; ANOMALY DETECTION;
D O I
10.1109/TGRS.2017.2729882
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
With the rapid development of spectral imaging techniques, classification of hyperspectral images (HSIs) has attracted great attention in various applications such as land survey and resource monitoring in the field of remote sensing. A key challenge in HSI classification is how to explore effective approaches to fully use the spatial-spectral information provided by the data cube. Multiple kernel learning (MKL) has been successfully applied to HSI classification due to its capacity to handle heterogeneous fusion of both spectral and spatial features. This approach can generate an adaptive kernel as an optimally weighted sum of a few fixed kernels to model a nonlinear data structure. In this way, the difficulty of kernel selection and the limitation of a fixed kernel can be alleviated. Various MKL algorithms have been developed in recent years, such as the general MKL, the subspace MKL, the nonlinear MKL, the sparse MKL, and the ensemble MKL. The goal of this paper is to provide a systematic review of MKL methods, which have been applied to HSI classification. We also analyze and evaluate different MKL algorithms and their respective characteristics in different cases of HSI classification cases. Finally, we discuss the future direction and trends of research in this area.
引用
收藏
页码:6547 / 6565
页数:19
相关论文
共 50 条
  • [31] Deep Learning Ensemble for Hyperspectral Image Classification
    Chen, Yushi
    Wang, Ying
    Gu, Yanfeng
    He, Xin
    Ghamisi, Pedram
    Jia, Xiuping
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (06) : 1882 - 1897
  • [32] Advances in Hyperspectral Image Classification Methods with Small Samples: A Review
    Wang, Xiaozhen
    Liu, Jiahang
    Chi, Weijian
    Wang, Weigang
    Ni, Yue
    REMOTE SENSING, 2023, 15 (15)
  • [33] Superpixel-feature-based multiple kernel sparse representation for hyperspectral image classification
    Li, Dan
    Wang, Qiang
    Kong, Fanqiang
    SIGNAL PROCESSING, 2020, 176
  • [34] MULTIPLE-FEATURE IDEAL REGULARIZED KERNEL FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Xu, Yan
    Peng, Jiangtao
    Du, Qian
    Younan, Nicolas H.
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 955 - 958
  • [35] HCKBoost: Hybridized composite kernel boosting with extreme learning machines for hyperspectral image classification
    Ergul, Ugur
    Bilgin, Gokhan
    NEUROCOMPUTING, 2019, 334 : 100 - 113
  • [36] Spatial-aware hyperspectral image classification via multifeature kernel dictionary learning
    Zhang, Huimin
    Yang, Ming
    Yang, Wanqi
    Lv, Jing
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2019, 7 (02) : 115 - 129
  • [37] Composite Kernel of Mutual Learning on Mid-Level Features for Hyperspectral Image Classification
    Sima, Haifeng
    Wang, Jing
    Guo, Ping
    Sun, Junding
    Liu, Hongmin
    Xu, Mingliang
    Zou, Youfeng
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (11) : 12217 - 12230
  • [38] Hyperspectral Image Classification via Kernel Sparse Representation
    Chen, Yi
    Nasrabadi, Nasser M.
    Tran, Trac D.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (01): : 217 - 231
  • [39] Hyperspectral Image Classification based on Spatial Graph Kernel
    Borhani, Mostafa
    Ghassemian, Hassan
    2014 22ND IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2014, : 1811 - 1816
  • [40] Ideal Regularized Composite Kernel for Hyperspectral Image Classification
    Peng, Jiangtao
    Chen, Hong
    Zhou, Yicong
    Li, Luoqing
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (04) : 1563 - 1574