Artificial Intelligence Tool for Assessment of Indeterminate Pulmonary Nodules Detected with CT

被引:40
|
作者
Kim, Roger Y. [1 ]
Oke, Jason L. [2 ]
Pickup, Lyndsey C. [3 ]
Munden, Reginald F. [4 ]
Dotson, Travis L. [5 ]
Bellinger, Christina R. [5 ]
Cohen, Avi [6 ]
Simoff, Michael J. [6 ]
Massion, Pierre P. [7 ]
Filippini, Claire [8 ]
Gleeson, Fergus, V [8 ]
Vachani, Anil [1 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Med, Div Pulm Allergy & Crit Care, Suite 216,Stemanler Hall,3450 Hamilton Walk, Philadelphia, PA 19104 USA
[2] Univ Oxford, Nuffield Dept Primary Care Hlth Sci, Oxford, England
[3] Optellum, Oxford, England
[4] Med Univ South Carolina, Dept Radiol & Radiol Sci, Charleston, SC USA
[5] Wake Forest Sch Med, Dept Pulm Crit Care Allergy & Immunol Dis, Winston Salem, NC USA
[6] Henry Ford Hlth Syst, Dept Med, Div Pulm & Crit Care Med, Detroit, MI USA
[7] Vanderbilt Ingram Canc Ctr, Div Allergy Pulm & Crit Care Med, Nashville, TN USA
[8] Oxford Univ Hosp NHS Fdn Trust, Dept Oncol, Oxford, England
关键词
LUNG-CANCER DIAGNOSIS; PROBABILITY; MALIGNANCY; VARIABILITY; GUIDELINES; CLINICIAN; ACCURACY; PATIENT; MODELS; ROC;
D O I
10.1148/radiol.212182
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Limited data are available regarding whether computer-aided diagnosis (CAD) improves assessment of malignancy risk in indeterminate pulmonary nodules (IPNs). Purpose: To evaluate the effect of an artificial intelligence-based CAD tool on clinician IPN diagnostic performance and agreement for both malignancy risk categories and management recommendations. Materials and Methods: This was a retrospective multireader multicase study performed in June and July 2020 on chest CT studies of IPNs. Readers used only CT imaging data and provided an estimate of malignancy risk and a management recommendation for each case without and with CAD. The effect of CAD on average reader diagnostic performance was assessed using the Obuchowski-Rockette and Dorfman-Berbaum-Metz method to calculate estimates of area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. Multirater Fleiss kappa statistics were used to measure interobserver agreement for malignancy risk and management recommendations. Results: A total of 300 chest CT scans of IPNs with maximal diameters of 5-30 mm (50.0% malignant) were reviewed by 12 readers (six radiologists, six pulmonologists) (patient median age, 65 years; IQR, 59-71 years; 164 [55%] men). Readers' average AUC improved from 0.82 to 0.89 with CAD (P<.001). At malignancy risk thresholds of 5% and 65%, use of CAD improved average sensitivity from 94.1% to 97.9% (P=.01) and from 52.6% to 63.1% (P<.001), respectively. Average reader specificity improved from 37.4% to 42.3% (P=.03) and from 87.3% to 89.9% (P=.05), respectively. Reader interobserver agreement improved with CAD for both the less than 5% (Fleiss kappa, 0.50 vs 0.71; P<.001) and more than 65% (Fleiss kappa, 0.54 vs 0.71; P<.001) malignancy risk categories. Overall reader interobserver agreement for management recommendation categories (no action, CT surveillance, diagnostic procedure) also improved with CAD (Fleiss kappa, 0.44 vs 0.52; P=.001). Conclusion: Use of computer-aided diagnosis improved estimation of indeterminate pulmonary nodule malignancy risk on chest CT scans and improved interobserver agreement for both risk stratification and management recommendations. (C) RSNA, 2022
引用
收藏
页码:683 / 691
页数:9
相关论文
共 50 条
  • [1] Clinical utility of an artificial intelligence radiomics-based tool for risk stratification of pulmonary nodules
    Kim, Roger Y.
    Yee, Clarisa
    Zeb, Sana
    Steltz, Jennifer
    Vickers, Andrew J.
    Rendle, Katharine A.
    Mitra, Nandita
    Pickup, Lyndsey C.
    DiBardino, David M.
    Vachani, Anil
    JNCI CANCER SPECTRUM, 2024, 8 (05)
  • [2] Implementation of artificial intelligence in the histological assessment of pulmonary subsolid nodules
    Deng, Jiajun
    Zhao, Mengmeng
    Li, Qiuyuan
    Zhang, Yikai
    Ma, Minjie
    Li, Chuanyi
    Wang, Jun
    She, Yunlang
    Jiang, Yan
    Zhang, Yunzeng
    Wang, Tingting
    Wu, Chunyan
    Hou, Likun
    Zhong, Sheng
    Jin, Shengxi
    Qian, Dahong
    Xie, Dong
    Zhu, Yuming
    Tandon, Yasmeen K.
    Snoeckx, Annemiek
    Jin, Feng
    Yu, Bentong
    Zhao, Guofang
    Chen, Chang
    TRANSLATIONAL LUNG CANCER RESEARCH, 2021, 10 (12) : 4574 - +
  • [3] Diagnostic success of transthoracic needle biopsy and PET-CT for 1 to 2 cm solid indeterminate pulmonary nodules
    Susam, Seher
    Cinkooglu, Akin
    Ceylan, Kenan Can
    Gursoy, Soner
    Komurcuoglu, Berna Eren
    Mertoglu, Aydan
    Cirak, Ali Kadri
    Tuksavul, Fevziye
    Gayaf, Mine
    Guldaval, Filiz
    Polat, Gulru
    Yildirim, Eylem
    Koparal, Hakan
    Yucel, Nur
    CLINICAL RESPIRATORY JOURNAL, 2020, 14 (05) : 453 - 461
  • [4] Probability of Cancer in Pulmonary Nodules Detected on First Screening CT
    McWilliams, Annette
    Tammemagi, Martin C.
    Mayo, John R.
    Roberts, Heidi
    Liu, Geoffrey
    Soghrati, Kam
    Yasufuku, Kazuhiro
    Martel, Simon
    Laberge, Francis
    Gingras, Michel
    Atkar-Khattra, Sukhinder
    Berg, Christine D.
    Evans, Ken
    Finley, Richard
    Yee, John
    English., John
    Nasute, Paola
    Goffin, John
    Puksa, Serge
    Stewart, Lori
    Tsai, Scott
    Johnston, Michael R.
    Manos, Daria
    Nicholas, Garth
    Goss, Glenwood D.
    Seely, Jean M.
    Amjadi, Kayvan
    Tremblay, Alain
    Burrowes, Paul
    MacEachern, Paul
    Bhatia, Rick
    Tsao, Ming-Sound
    Lam, Stephen
    NEW ENGLAND JOURNAL OF MEDICINE, 2013, 369 (10) : 910 - 919
  • [5] Narrative review: indeterminate pulmonary nodules
    Wadowski, Benjamin
    Bueno, Raphael
    CURRENT CHALLENGES IN THORACIC SURGERY, 2022, 4
  • [6] Narrative review: indeterminate pulmonary nodules
    Wadowski, Benjamin
    Bueno, Raphael
    CURRENT CHALLENGES IN THORACIC SURGERY, 2022, 4
  • [7] Assessing the Accuracy of a Deep Learning Method to Risk Stratify Indeterminate Pulmonary Nodules
    Massion, Pierre P.
    Antic, Sanja
    Ather, Sarim
    Arteta, Carlos
    Brabec, Jan
    Chen, Heidi
    Declerck, Jerome
    Dufek, David
    Hickes, William
    Kadir, Timor
    Kunst, Jonas
    Landman, Bennett A.
    Munden, Reginald F.
    Novotny, Petr
    Peschl, Heiko
    Pickup, Lyndsey C.
    Santos, Catarina
    Smith, Gary T.
    Talwar, Ambika
    Gleeson, Fergus
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2020, 202 (02) : 241 - 249
  • [8] Artificial Intelligence for the Characterization of Pulmonary Nodules, Lung Tumors and Mediastinal Nodes on PET/CT
    Krarup, Marie Manon Krebs
    Krokos, Georgios
    Subesinghe, Manil
    Nair, Arjun
    Fischer, Barbara Malene
    SEMINARS IN NUCLEAR MEDICINE, 2020, 51 (02) : 143 - 156
  • [9] Expanding Role of Advanced Image Analysis in CT-detected Indeterminate Pulmonary Nodules and Early Lung Cancer Characterization
    Prosper, Ashley Elizabeth
    Kammer, Michael N.
    Maldonado, Fabien
    Aberle, Denise R.
    Hsu, William
    RADIOLOGY, 2023, 309 (01)
  • [10] Integrated Biomarkers for the Management of Indeterminate Pulmonary Nodules
    Kammer, Michael N.
    Lakhani, Dhairya A.
    Balar, Aneri B.
    Antic, Sanja L.
    Kussrow, Amanda K.
    Webster, Rebekah L.
    Mahapatra, Shayan
    Barad, Udaykamal
    Shah, Chirayu
    Atwater, Thomas
    Diergaarde, Brenda
    Qian, Jun
    Kaizer, Alexander
    New, Melissa
    Hirsch, Erin
    Feser, William J.
    Strong, Jolene
    Rioth, Matthew
    Miller, York E.
    Balagurunathan, Yoganand
    Rowe, Dianna J.
    Helmey, Sherif
    Chen, Sheau-Chiann
    Bauza, Joseph
    Deppen, Stephen A.
    Sandler, Kim
    Maldonado, Fabien
    Spira, Avrum
    Billatos, Ehab
    Schabath, Matthew B.
    Gillies, Robert J.
    Wilson, David O.
    Walker, Ronald C.
    Landman, Bennett
    Chen, Heidi
    Grogan, Eric L.
    Baron, Anna E.
    Bornhop, Darryl J.
    Massion, Pierre P.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2021, 204 (11) : 1306 - 1316