Nonreactive Electrolyte Additives for Stable Lithium Metal Anodes

被引:23
作者
Ma, Qingtao [1 ,2 ]
Cui, Jiayu [1 ,2 ]
Luo, Jiayan [1 ,2 ]
Dong, Anping [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Key Lab Adv High Temp Mat & Precis Formi, Sch Mat Sci & Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Sch Mat Sci & Engn, Shanghai 200240, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
lithium metal anode; nonreactive additive; regulator Li+; nucleation; codeposition; electrodeposition behavior; morphology; dendrite; LI-ION; SOLID-ELECTROLYTE; DEPOSITION; GROWTH; DISSOLUTION; MICROSCOPY; PARTICLES; BATTERIES; STORAGE; NICKEL;
D O I
10.1021/acsaem.1c03333
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rechargeable lithium metal batteries have been considered an attractive power source to satisfy the demand for the high energy density of next-generation portable electronics and electric vehicles. Nevertheless, safety hazards originating from its huge volume fluctuation, severe side reactions, and dendrite growth have long bottlenecked their practical applications. Optimizing a liquid electrolyte system by functional additives leads to a remarkably enhanced electrochemical performance by in situ regulating the electrodeposition behavior. In recent years, various nonreactive additives have been tested with significantly distinct principles and brilliant results, broadening the frontier of the research area of additives. Herein, the current progress in optimizing liquid electrolyte systems with nonreactive additives is discussed and analyzed in detail in terms of molecules, nanoparticles, and 2D materials. Finally, perspectives for its future development and vital unsolved questions concerning its commercialization are provided.
引用
收藏
页码:3 / 13
页数:11
相关论文
共 79 条
[1]   Nonpolar Alkanes Modify Lithium-Ion Solvation for Improved Lithium Deposition and Stripping [J].
Amanchukwu, Chibueze, V ;
Kong, Xian ;
Qin, Jian ;
Cui, Yi ;
Bao, Zhenan .
ADVANCED ENERGY MATERIALS, 2019, 9 (41)
[2]   CORROSION PROTECTION OF SECONDARY LITHIUM ELECTRODES IN ORGANIC ELECTROLYTES [J].
BESENHARD, JO ;
GURTLER, J ;
KOMENDA, P .
JOURNAL OF POWER SOURCES, 1987, 20 (3-4) :253-258
[3]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/NMAT3191, 10.1038/nmat3191]
[4]   A mobile robotic chemist [J].
Burger, Benjamin ;
Maffettone, Phillip M. ;
Gusev, Vladimir V. ;
Aitchison, Catherine M. ;
Bai, Yang ;
Wang, Xiaoyan ;
Li, Xiaobo ;
Alston, Ben M. ;
Li, Buyi ;
Clowes, Rob ;
Rankin, Nicola ;
Harris, Brandon ;
Sprick, Reiner Sebastian ;
Cooper, Andrew I. .
NATURE, 2020, 583 (7815) :237-+
[5]   Three-additive model of superfilling of copper [J].
Cao, Y ;
Taephaisitphongse, P ;
Chalupa, R ;
West, AC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (07) :C466-C472
[6]   A MATHEMATICAL-MODEL FOR THE ELECTROLYTIC CODEPOSITION OF PARTICLES WITH A METALLIC MATRIX [J].
CELIS, JP ;
ROOS, JR ;
BUELENS, C .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (06) :1402-1408
[7]   Morphological and Chemical Mapping of Columnar Lithium Metal [J].
Chang, Wesley ;
Park, Jeung Hun ;
Dutta, Nikita S. ;
Arnold, Craig B. ;
Steingart, Daniel A. .
CHEMISTRY OF MATERIALS, 2020, 32 (07) :2803-2814
[8]   ELECTROCHEMICAL ASPECTS OF THE GENERATION OF RAMIFIED METALLIC ELECTRODEPOSITS [J].
CHAZALVIEL, JN .
PHYSICAL REVIEW A, 1990, 42 (12) :7355-7367
[9]   Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition [J].
Chen, Wei ;
Hu, Yin ;
Lv, Weiqiang ;
Lei, Tianyu ;
Wang, Xianfu ;
Li, Zhenghan ;
Zhang, Miao ;
Huang, Jianwen ;
Du, Xinchuan ;
Yan, Yichao ;
He, Weidong ;
Liu, Chen ;
Liao, Min ;
Zhang, Wanli ;
Xiong, Jie ;
Yan, Chenglin .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]   Nanodiamonds suppress the growth of lithium dendrites [J].
Cheng, Xin-Bing ;
Zhao, Meng-Qiang ;
Chen, Chi ;
Pentecost, Amanda ;
Maleski, Kathleen ;
Mathis, Tyler ;
Zhang, Xue-Qiang ;
Zhang, Qiang ;
Jiang, Jianjun ;
Gogotsi, Yury .
NATURE COMMUNICATIONS, 2017, 8