Antimagic labelings of caterpillars

被引:15
作者
Lozano, Antoni [1 ]
Mora, Merce [2 ]
Seara, Carlos [2 ]
机构
[1] Univ Politecn Cataluna, Comp Sci Dept, Barcelona, Spain
[2] Univ Politecn Cataluna, Math Dept, Barcelona, Spain
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Antimagic graphs; Algorithms; Labelings; GRAPHS; GRIDS;
D O I
10.1016/j.amc.2018.11.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A k-antimagic labeling of a graph G is an injection from E(G) to {1, 2, ..., vertical bar E(G)vertical bar +k} such that all vertex sums are pairwise distinct, where the vertex sum at vertex u is the sum of the labels assigned to edges incident to u. We call a graph k-antimagic when it has a k-antimagic labeling, and antimagic when it is 0-antimagic. Hartsfield and Ringel conjectured that every simple connected graph other than K-2 is antimagic, but the conjecture is still open even for trees. Here we study k-antimagic labelings of caterpillars. We use algorithmic and constructive techniques, instead of the standard Combinatorial NullStel-lenSatz method, to prove our results: (i) any caterpillar of order n is ( left perpendicular n- 1)/2 right perpendicular - 2)- antimagic; (ii) any caterpillar with a spine of order s with either at least left perpendicular (3s + 1)/2 right perpendicular leaves or left perpendicular(s - 1)/2 right perpendicular consecutive vertices of degree at most 2 at one end of a longest path, is antimagic; and (iii) if p is a prime number, any caterpillar with a spine of order p, p -1 or p - 2 is 1-antimagic. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:734 / 740
页数:7
相关论文
共 24 条
[11]  
Gallian J., 2007, ELECTRON J COMB, V14, pDS6
[12]  
Hartsfield N., 1990, Pearls in Graph Theory, P108
[13]   Anti-magic graphs via the Combinatorial NullStellenSatz [J].
Hefetz, D .
JOURNAL OF GRAPH THEORY, 2005, 50 (04) :263-272
[14]   On zero-sum partitions and anti-magic trees [J].
Kaplan, Gil ;
Lev, Arieh ;
Roditty, Yehuda .
DISCRETE MATHEMATICS, 2009, 309 (08) :2010-2014
[15]  
Kovar P., 2016, P 9 INT WORKSH GRAPH
[16]   Anti-magic labeling of trees [J].
Liang, Yu-Chang ;
Wong, Tsai-Lien ;
Zhu, Xuding .
DISCRETE MATHEMATICS, 2014, 331 :9-14
[17]   Antimagic Labeling of Cubic Graphs [J].
Liang, Yu-Chang ;
Zhu, Xuding .
JOURNAL OF GRAPH THEORY, 2014, 75 (01) :31-36
[18]   Approximate results for rainbow labelings [J].
Llado, Anna ;
Miller, Mirka .
PERIODICA MATHEMATICA HUNGARICA, 2017, 74 (01) :11-21
[19]  
Matamala M., 2015, ELECT NOTES DISCRETE, V50, P127
[20]   On anti-magic labeling for graph products [J].
Wang, Tao-Ming ;
Hsiao, Cheng-Chih .
DISCRETE MATHEMATICS, 2008, 308 (16) :3624-3633