Antimagic labelings of caterpillars

被引:15
作者
Lozano, Antoni [1 ]
Mora, Merce [2 ]
Seara, Carlos [2 ]
机构
[1] Univ Politecn Cataluna, Comp Sci Dept, Barcelona, Spain
[2] Univ Politecn Cataluna, Math Dept, Barcelona, Spain
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Antimagic graphs; Algorithms; Labelings; GRAPHS; GRIDS;
D O I
10.1016/j.amc.2018.11.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A k-antimagic labeling of a graph G is an injection from E(G) to {1, 2, ..., vertical bar E(G)vertical bar +k} such that all vertex sums are pairwise distinct, where the vertex sum at vertex u is the sum of the labels assigned to edges incident to u. We call a graph k-antimagic when it has a k-antimagic labeling, and antimagic when it is 0-antimagic. Hartsfield and Ringel conjectured that every simple connected graph other than K-2 is antimagic, but the conjecture is still open even for trees. Here we study k-antimagic labelings of caterpillars. We use algorithmic and constructive techniques, instead of the standard Combinatorial NullStel-lenSatz method, to prove our results: (i) any caterpillar of order n is ( left perpendicular n- 1)/2 right perpendicular - 2)- antimagic; (ii) any caterpillar with a spine of order s with either at least left perpendicular (3s + 1)/2 right perpendicular leaves or left perpendicular(s - 1)/2 right perpendicular consecutive vertices of degree at most 2 at one end of a longest path, is antimagic; and (iii) if p is a prime number, any caterpillar with a spine of order p, p -1 or p - 2 is 1-antimagic. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:734 / 740
页数:7
相关论文
共 24 条
  • [1] Dense graphs are antimagic
    Alon, N
    Kaplan, G
    Lev, A
    Roditty, Y
    Yuster, R
    [J]. JOURNAL OF GRAPH THEORY, 2004, 47 (04) : 297 - 309
  • [2] Combinatorial Nullstellensatz
    Alon, N
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (1-2) : 7 - 29
  • [3] Antimagic labeling of generalized pyramid graphs
    Arumugam, Subramanian
    Miller, Mirka
    Phanalasy, Oudone
    Ryan, Joe
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (02) : 283 - 290
  • [4] Antimagic Labeling of Regular Graphs
    Chang, Feihuang
    Liang, Yu-Chang
    Pan, Zhishi
    Zhu, Xuding
    [J]. JOURNAL OF GRAPH THEORY, 2016, 82 (04) : 339 - 349
  • [5] Chawathe PD, 2002, NUMBER THEORY AND DISCRETE MATHEMATICS, P77
  • [6] Lattice grids and prisms are antimagic
    Cheng, Yongxi
    [J]. THEORETICAL COMPUTER SCIENCE, 2007, 374 (1-3) : 66 - 73
  • [7] A new class of antimagic Cartesian product graphs
    Cheng, Yongxi
    [J]. DISCRETE MATHEMATICS, 2008, 308 (24) : 6441 - 6448
  • [8] Regular Graphs of Odd Degree Are Antimagic
    Cranston, Daniel W.
    Liang, Yu-Chang
    Zhu, Xuding
    [J]. JOURNAL OF GRAPH THEORY, 2015, 80 (01) : 28 - 33
  • [9] Regular Bipartite Graphs Are Antimagic
    Cranston, Daniel W.
    [J]. JOURNAL OF GRAPH THEORY, 2009, 60 (03) : 173 - 182
  • [10] Graphs of Large Linear Size Are Antimagic
    Eccles, Tom
    [J]. JOURNAL OF GRAPH THEORY, 2016, 81 (03) : 236 - 261