Microparticles of High Entropy Alloys Made by Laser-Induced Forward Transfer

被引:1
|
作者
Han, Molong [1 ,2 ]
Meghwal, Ashok [3 ]
Ng, Soon Hock [1 ,2 ]
Smith, Daniel [1 ,2 ]
Mu, Haoran [1 ,2 ]
Katkus, Tomas [1 ,2 ]
Zhu, De Ming [4 ]
Mukhlis, Reiza [4 ]
Vongsvivut, Jitraporn [5 ]
Berndt, Christopher C. [3 ]
Ang, Andrew S. M. [3 ]
Juodkazis, Saulius [1 ,2 ,6 ]
机构
[1] Swinburne Univ Technol, Opt Sci Ctr, Sch Sci, Hawthorn, Vic 3122, Australia
[2] Swinburne Univ Technol, ARC Training Ctr Surface Engn Adv Mat SEAM, Sch Sci, Hawthorn, Vic 3122, Australia
[3] Swinburne Univ Technol, Australian Res Council ARC, Ind Transformat Training Ctr Surface Engn Adv Mat, Hawthorn, Vic 3122, Australia
[4] Swinburne Univ Technol, Acad Operat Unit, Hawthorn, Vic 3122, Australia
[5] ANSTO Australian Synchrotron, Infrared Microspect IRM Beamline, 800 Blackburn Rd, Clayton, Vic 3168, Australia
[6] Tokyo Inst Technol, WRH Program Int Res Frontiers Initiat IRFI, Midori Ku, Nagatsuta Cho, Yokohama, Kanagawa 2268503, Japan
基金
澳大利亚研究理事会;
关键词
laser-induced forward transfer; high-entropy alloys; microparticles;
D O I
10.3390/ma15228063
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The controlled deposition of CoCrFeNiMo0.2 high-entropy alloy (HEA) microparticles was achieved by using laser-induced forward transfer (LIFT). Ultra-short laser pulses of 230 fs of 515 nm wavelength were tightly focused into similar to 2.4 mu m focal spots on the similar to 50-nm thick plasma-sputtered films of CoCrFeNiMo0.2. The morphology of HEA microparticles can be controlled at different fluences. The HEA films were transferred onto glass substrates by magnetron sputtering in a vacuum (10(-8) atm) from the thermal spray-coated substrates. The absorption coefficient of CoCrFeNiMo0.2 alpha approximate to 6 x 10(5) cm(-1) was determined at 600-nm wavelength. The real and imaginary parts of the refractive index (n + ik) of HEA were determined from reflectance and transmittance by using nanofilms.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Laser-induced forward transfer of multi-layered structures for OTFT applications
    Constantinescu, C.
    Diallo, A. K.
    Rapp, L.
    Cremillieu, P.
    Mazurczyk, R.
    Serein-Spirau, F.
    Lere-Porte, J. P.
    Delaporte, P.
    Alloncle, A. P.
    Videlot-Ackermann, C.
    APPLIED SURFACE SCIENCE, 2015, 336 : 11 - 15
  • [32] Laser-induced forward transfer (LIFT) of material using ablation of thin films
    Al Tarazi, Saad
    Batani, Dimitri
    Al Hadithi, Yas
    Jafer, Rashida
    Antonelli, Luca
    Vodopivec, Bruno
    Vitobello, Marialuisa
    Iqbal, Munawar
    RADIATION EFFECTS AND DEFECTS IN SOLIDS-INCORPORATING PLASMA SCIENCE AND PLASMA TECHNOLOGY, 2010, 165 (6-10): : 501 - 508
  • [33] Printing regime for single metal microdroplet deposition in laser-induced forward transfer
    Wu, Di
    Luo, Guohu
    Hu, Yongxiang
    Zhou, Yu
    Chen, Meng
    OPTICS AND LASERS IN ENGINEERING, 2023, 167
  • [34] Transparent and conductive silver nanowires networks printed by laser-induced forward transfer
    Sopena, P.
    Serra, P.
    Fernandez-Pradas, J. M.
    APPLIED SURFACE SCIENCE, 2019, 476 : 828 - 833
  • [35] Blister-Based Laser-Induced Forward Transfer of Luminescent Diamond Nanoparticles
    Komlenok, Maxim S.
    Kudryavtsev, Oleg S.
    Pasternak, Dmitrii G.
    Vlasov, Igor I.
    Konov, Vitaly I.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2021, 218 (05):
  • [36] Preparation of brittle ITO microstructures using Laser-Induced forward transfer technology
    Sun, Chunqiang
    Wang, Zhuochao
    Cao, Wenxin
    Gao, Gang
    Yang, Lei
    Han, Jiecai
    Zhu, Jiaqi
    CHEMICAL ENGINEERING JOURNAL, 2024, 496
  • [37] Ferrocene pixels by laser-induced forward transfer: towards flexible microelectrode printing
    Mitu, B.
    Matei, A.
    Filipescu, M.
    Papavlu, A. Palla
    Bercea, A.
    Lippert, T.
    Dinescu, M.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (11)
  • [38] Laser induced forward transfer
    Kang, Chun Lei
    Xu, Yan
    Yung, Kai Leung
    Chen, Wei
    MANUFACTURING ENGINEERING AND AUTOMATION II, PTS 1-3, 2012, 591-593 : 1135 - 1138
  • [39] Microscopic observation of laser-induced forward transfer process by two-dimensional laser induced fluorescnce technique
    Nakata, Y
    Okada, T
    Maeda, M
    LASER APPLICATIONS IN MICROELECTRONIC AND OPTOELECTRONIC MANUFACTURING V, 2000, 3933 : 457 - 468
  • [40] Studying the effect of high-viscosity material properties on print quality using laser-induced forward transfer
    Suhara, Hiroyuki
    Aoto, Jun
    OPTICAL ENGINEERING, 2022, 61 (10)