Microparticles of High Entropy Alloys Made by Laser-Induced Forward Transfer

被引:1
|
作者
Han, Molong [1 ,2 ]
Meghwal, Ashok [3 ]
Ng, Soon Hock [1 ,2 ]
Smith, Daniel [1 ,2 ]
Mu, Haoran [1 ,2 ]
Katkus, Tomas [1 ,2 ]
Zhu, De Ming [4 ]
Mukhlis, Reiza [4 ]
Vongsvivut, Jitraporn [5 ]
Berndt, Christopher C. [3 ]
Ang, Andrew S. M. [3 ]
Juodkazis, Saulius [1 ,2 ,6 ]
机构
[1] Swinburne Univ Technol, Opt Sci Ctr, Sch Sci, Hawthorn, Vic 3122, Australia
[2] Swinburne Univ Technol, ARC Training Ctr Surface Engn Adv Mat SEAM, Sch Sci, Hawthorn, Vic 3122, Australia
[3] Swinburne Univ Technol, Australian Res Council ARC, Ind Transformat Training Ctr Surface Engn Adv Mat, Hawthorn, Vic 3122, Australia
[4] Swinburne Univ Technol, Acad Operat Unit, Hawthorn, Vic 3122, Australia
[5] ANSTO Australian Synchrotron, Infrared Microspect IRM Beamline, 800 Blackburn Rd, Clayton, Vic 3168, Australia
[6] Tokyo Inst Technol, WRH Program Int Res Frontiers Initiat IRFI, Midori Ku, Nagatsuta Cho, Yokohama, Kanagawa 2268503, Japan
基金
澳大利亚研究理事会;
关键词
laser-induced forward transfer; high-entropy alloys; microparticles;
D O I
10.3390/ma15228063
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The controlled deposition of CoCrFeNiMo0.2 high-entropy alloy (HEA) microparticles was achieved by using laser-induced forward transfer (LIFT). Ultra-short laser pulses of 230 fs of 515 nm wavelength were tightly focused into similar to 2.4 mu m focal spots on the similar to 50-nm thick plasma-sputtered films of CoCrFeNiMo0.2. The morphology of HEA microparticles can be controlled at different fluences. The HEA films were transferred onto glass substrates by magnetron sputtering in a vacuum (10(-8) atm) from the thermal spray-coated substrates. The absorption coefficient of CoCrFeNiMo0.2 alpha approximate to 6 x 10(5) cm(-1) was determined at 600-nm wavelength. The real and imaginary parts of the refractive index (n + ik) of HEA were determined from reflectance and transmittance by using nanofilms.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Laser-induced forward transfer of high-viscosity silver pastes
    Munoz-Martin, D.
    Brasz, C. F.
    Chen, Y.
    Morales, M.
    Arnold, C. B.
    Molpeceres, C.
    APPLIED SURFACE SCIENCE, 2016, 366 : 389 - 396
  • [2] Laser-induced forward transfer of graphene oxide
    Xinwei Wang
    Jian Zhang
    Xinliang Mei
    Jieliang Miao
    Xingsheng Wang
    Applied Physics A, 2021, 127
  • [3] Laser-induced forward transfer of graphene oxide
    Wang, Xinwei
    Zhang, Jian
    Mei, Xinliang
    Miao, Jieliang
    Wang, Xingsheng
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2021, 127 (03):
  • [4] Laser-Induced Forward Transfer: Fundamentals and Applications
    Serra, Pere
    Pique, Alberto
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (01)
  • [5] Laser-Induced Forward Transfer of Graphene Nanoribbons
    Komlenok, M. S.
    Fedotov, P. V.
    Kurochitsky, N. D.
    Popovich, A. F.
    Pivovarov, P. A.
    DOKLADY PHYSICS, 2022, 67 (08) : 228 - 235
  • [6] Laser-Induced Forward Transfer of Graphene Nanoribbons
    M. S. Komlenok
    P. V. Fedotov
    N. D. Kurochitsky
    A. F. Popovich
    P. A. Pivovarov
    Doklady Physics, 2022, 67 : 228 - 235
  • [7] High-resolution imaging of ejection dynamics in laser-induced forward transfer
    Pohl, R.
    Visser, C. W.
    Romer, G. R. B. E.
    Sun, C.
    in't Veld, A. J. Huis
    Lohse, D.
    LASER APPLICATIONS IN MICROELECTRONIC AND OPTOELECTRONIC MANUFACTURING (LAMOM) XIX, 2014, 8967
  • [8] Surface Role in Laser-Induced Forward Transfer Applications
    Kallepalli, L. N. Deepak
    Godfrey, Alan T. K.
    Ratte, Jesse
    Jakubek, Zygmunt J.
    Corkum, P. B.
    2019 PHOTONICS NORTH (PN), 2019,
  • [9] Laser-Induced Forward Transfer on Regenerative Medicine Applications
    Christina Kryou
    Ioanna Zergioti
    Biomedical Materials & Devices, 2023, 1 (1): : 5 - 20
  • [10] Laser-induced forward transfer: Propelling liquids with light
    Fernandez-Pradas, J. M.
    Florian, C.
    Caballero-Lucas, F.
    Sopena, P.
    Morenza, J. L.
    Serra, P.
    APPLIED SURFACE SCIENCE, 2017, 418 : 559 - 564