Optical Sensing Based on Localized Surface Plasmon Resonance

被引:0
|
作者
Zhu, Shaoli [1 ]
Zhou, Wei [1 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
来源
ADVANCED PRECISION ENGINEERING | 2010年 / 447-448卷
关键词
Localized surface plasmon resonance; nanostructure; focused ion beam; sensitivity; resolution; SILVER; NANOPARTICLES;
D O I
10.4028/www.scientific.net/KEM.447-448.584
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Localized surface plasmon resonance (LSPR)-based nano-biosensors are of great interest in various applications such as environmental protection, biotechnology, and food safety. It is well known that types of materials and shapes of the nanostructures have significant influence on the sensitivity and the resolution in nanobiosensor application field. The conventional nanostructure array used for nanobiosensor is fabricated by chemical method, so it is difficult to control the shape and the inter-particle space. Focused ion beam (FIB) can be used to produce any shapes with a very high level of regularity and reproducibility. This makes it possible to optimize the shape of nanostructures and the inter-particle distance to achieve the full potential application in nanobiosensor. Using focused ion beam (FIB) nanofabrication method, we have fabricated the regularly shaped hybrid Ag-Au nanostructures distributed on the surface of the glass substrate. Gold-coating was used to tuning the optical characteristics of the silver nanostructure array. Discrete dipole approximation (DDA) method was used to optimize geometrical parameters of the hybrid Ag-Au nanostructures. The design and experiment results show that the sensitivity and resolution have been improved considerably compared to the chemically synthesized nanostructures. The nano-biosensor demonstrates the potential applications in monitoring, detection and identification of biological agents, and characterization of intermolecular interactions.
引用
收藏
页码:584 / 589
页数:6
相关论文
共 50 条
  • [41] Optical fiber refractometers based on localized surface plasmon resonance (LSPR) and lossy mode resonance (LMR)
    Rivero, Pedro J.
    Hernaez, Miguel
    Goicoechea, Javier
    Matias, Ignacio R.
    Arregui, Francisco J.
    23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS, 2014, 9157
  • [42] Studies on the Sensitivity of the Fiber Sensor Based on the Localized Surface Plasmon Resonance
    Li, Jiangyan
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2017, 9 (11) : 1714 - 1719
  • [43] Backward-scattering-based Localized Surface Plasmon Resonance Sensors with Gold Nanospheres and Nanoshells
    Kawawaki, Tokuhisa
    Shinjo, Naoaki
    Tatsuma, Tetsu
    ANALYTICAL SCIENCES, 2016, 32 (03) : 271 - 274
  • [44] Fabrication and evaluation of optical nanobiosensor based on localized surface plasmon resonance (LSPR) of gold nanorod for detection of CRP
    Hosseinniay, Sam
    Rezayan, Ali Hossein
    Ghasemi, Forough
    Malekmohamadi, Marjan
    Taheri, Ramezan Ali
    Hosseini, Morteza
    Alvandi, Hale
    ANALYTICA CHIMICA ACTA, 2023, 1237
  • [45] High Performance Detection of Alzheimer's Disease Biomarkers Based on Localized Surface Plasmon Resonance
    Ly, Tan Nhiem
    Park, Sangkwon
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2020, 91 (91) : 182 - 190
  • [46] Gold Nano-Island Platforms for Localized Surface Plasmon Resonance Sensing: A Short Review
    Badilescu, Simona
    Raju, Duraichelvan
    Bathini, Srinivas
    Packirisamy, Muthukumaran
    MOLECULES, 2020, 25 (20):
  • [47] Localized surface plasmon resonance modes on an asymmetric cylindrical nanorod dimer
    Wang, Rui-Bing
    Zhang, Zhi-Dong
    Jiao, Guo-Tai
    Xue, Chen-Yang
    Yan, Shu-Bin
    Wang, Hongyang
    MODERN PHYSICS LETTERS B, 2016, 30 (22):
  • [48] Developments in Localized Surface Plasmon Resonance
    Mcoyi, M. P.
    Mpofu, K. T.
    Sekhwama, M.
    Mthunzi-Kufa, P.
    PLASMONICS, 2024,
  • [49] Colorimetric Detection Based on Localized Surface Plasmon Resonance for Determination of Chemicals in Urine
    Lertvachirapaiboon, Chutiparn
    Baba, Akira
    Shinbo, Kazunari
    Kato, Keizo
    ANALYTICAL SCIENCES, 2021, 37 (07) : 929 - 940
  • [50] Computational analysis of nanoparticles for the construction of nanosensors based on localized surface plasmon resonance
    da Silva, Talita Brito
    de Melo, Arthur Aprgio
    Moreira, Cleumar da Silva
    Santa Cruz, Rossana Moreno
    2019 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2019, : 961 - 965