Optical Sensing Based on Localized Surface Plasmon Resonance

被引:0
|
作者
Zhu, Shaoli [1 ]
Zhou, Wei [1 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
来源
ADVANCED PRECISION ENGINEERING | 2010年 / 447-448卷
关键词
Localized surface plasmon resonance; nanostructure; focused ion beam; sensitivity; resolution; SILVER; NANOPARTICLES;
D O I
10.4028/www.scientific.net/KEM.447-448.584
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Localized surface plasmon resonance (LSPR)-based nano-biosensors are of great interest in various applications such as environmental protection, biotechnology, and food safety. It is well known that types of materials and shapes of the nanostructures have significant influence on the sensitivity and the resolution in nanobiosensor application field. The conventional nanostructure array used for nanobiosensor is fabricated by chemical method, so it is difficult to control the shape and the inter-particle space. Focused ion beam (FIB) can be used to produce any shapes with a very high level of regularity and reproducibility. This makes it possible to optimize the shape of nanostructures and the inter-particle distance to achieve the full potential application in nanobiosensor. Using focused ion beam (FIB) nanofabrication method, we have fabricated the regularly shaped hybrid Ag-Au nanostructures distributed on the surface of the glass substrate. Gold-coating was used to tuning the optical characteristics of the silver nanostructure array. Discrete dipole approximation (DDA) method was used to optimize geometrical parameters of the hybrid Ag-Au nanostructures. The design and experiment results show that the sensitivity and resolution have been improved considerably compared to the chemically synthesized nanostructures. The nano-biosensor demonstrates the potential applications in monitoring, detection and identification of biological agents, and characterization of intermolecular interactions.
引用
收藏
页码:584 / 589
页数:6
相关论文
共 50 条
  • [21] Nano-optical Antenna Sensor Based on Localized Surface Plasmon Resonance
    Xu, Qin
    Pan, Chong
    Chen, Yao
    2016 IEEE INTERNATIONAL CONFERENCE ON HIGH VOLTAGE ENGINEERING AND APPLICATION (ICHVE), 2016,
  • [22] Optical fiber biosensor based on localized surface plasmon resonance in gold nanoparticles
    Kajikawa, K
    Mitsui, K
    NANOSENSING: MATERIALS AND DEVICES, 2004, 5593 : 494 - 501
  • [23] Wide index optical fiber sensor based on localized surface plasmon resonance
    Li, Weigang
    Shen, Tao
    Feng, Yue
    Liu, Chi
    Liu, Xin
    PHYSICA SCRIPTA, 2025, 100 (03)
  • [24] Study of localized surface-plasmon-resonance-based optical fiber sensor
    Dutta, Rani
    Bharadwaj, Reshma
    Mukherji, Soumyo
    Kundu, Tapanendu
    APPLIED OPTICS, 2011, 50 (25) : E138 - E144
  • [25] Fabrication and measurement of optical waveguide sensor based on localized surface plasmon resonance
    Hyeong-Min Kim
    Jae-Hyoung Park
    Seung-Ki Lee
    Micro and Nano Systems Letters, 7
  • [26] Fabrication and measurement of optical waveguide sensor based on localized surface plasmon resonance
    Kim, Hyeong-Min
    Park, Jae-Hyoung
    Lee, Seung-Ki
    MICRO AND NANO SYSTEMS LETTERS, 2019, 7 (01)
  • [27] The Optical Property of Core-Shell Nanosensors and Detection of Atrazine Based on Localized Surface Plasmon Resonance (LSPR) Sensing
    Yang, Shaobo
    Wu, Tengfei
    Zhao, Xinhua
    Li, Xingfei
    Tan, Wenbin
    SENSORS, 2014, 14 (07) : 13273 - 13284
  • [28] Gold Nanoplates for a Localized Surface Plasmon Resonance-Based Boric Acid Sensor
    Morsin, Mania
    Salleh, Muhamad Mat
    Umar, Akrajas Ali
    Sandan, Mohd Zainizan
    SENSORS, 2017, 17 (05)
  • [29] Review of Surface Plasmon Resonance and Localized Surface Plasmon Resonance Sensor
    Chen, Yong
    Ming, Hai
    PHOTONIC SENSORS, 2012, 2 (01) : 37 - 49
  • [30] Amorphous silicon-carbon alloys for efficient localized surface plasmon resonance sensing
    Galopin, Elisabeth
    Touahir, Larbi
    Niedziolka-Joensson, Joanna
    Boukherroub, Rabah
    Gouget-Laemmel, Anne Chantal
    Chazalviel, Jean-Noel
    Ozanam, Francois
    Szunerits, Sabine
    BIOSENSORS & BIOELECTRONICS, 2010, 25 (05) : 1199 - 1203