GRADIENT BOUNDS FOR RADIAL MAXIMAL FUNCTIONS

被引:5
作者
Carneiro, Emanuel [1 ]
Gonzalez-Riquelme, Cristian
机构
[1] ICTP Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, Trieste I-34151, Italy
来源
ANNALES FENNICI MATHEMATICI | 2021年 / 46卷 / 01期
关键词
Maximal operators; Sobolev spaces; bounded variation; convolution; sphere;
D O I
10.5186/aasfm.2021.4631
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the regularity properties of certain maximal operators of convolution type at the endpoint p = 1, when acting on radial data. In particular, for the heat flow maximal operator and the Poisson maximal operator, when the initial datum u0 is an element of W1,1(Rd) is a radial function, we show that the associated maximal function u* is weakly differentiable and This establishes the analogue of a recent result of Luiro for the uncentered Hardy-Littlewood maximal operator, now in a centered setting with smooth kernels. In a second part of the paper, we establish similar gradient bounds for maximal operators on the sphere Sd, when acting on polar functions. Our study includes the uncentered Hardy-Littlewood maximal operator, the heat flow maximal operator and the Poisson maximal operator on Sd.
引用
收藏
页码:495 / 521
页数:27
相关论文
共 42 条
  • [1] IMPROVED POINCARE INEQUALITIES AND SOLUTIONS OF THE DIVERGENCE IN WEIGHTED FORMS
    Acosta, Gabriel
    Cejas, Maria E.
    Duran, Ricardo G.
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2017, 42 (01) : 211 - 226
  • [2] INTEGRAL-INEQUALITIES OF HARDY AND POINCARE TYPE
    BOAS, HP
    STRAUBE, EJ
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (01) : 172 - 176
  • [3] BOJARSKI B, 1988, LECT NOTES MATH, V1351, P52
  • [4] BOMAN J., 1982, Reports
  • [5] Buckley S, 1995, MATH RES LETT, V2, P577
  • [6] Buckley S, 1996, XVITH ROLF NEVANLINNA COLLOQUIUM, P91
  • [7] ON THE EXISTENCE OF CERTAIN SINGULAR INTEGRALS
    CALDERON, AP
    ZYGMUND, A
    [J]. ACTA MATHEMATICA, 1952, 88 (03) : 85 - 139
  • [8] Campanato S., 1963, Ann. Scuola Norm. Sup. Pisa (3), V17, P175
  • [9] Improved fractional Poincare type inequalities on John domains
    Cejas, Maria Eugenia
    Drelichman, Irene
    Martinez-Perales, Javier C.
    [J]. ARKIV FOR MATEMATIK, 2019, 57 (02): : 285 - 315
  • [10] EMBEDDING AND COMPACT EMBEDDING FOR WEIGHTED AND ABSTRACT SOBOLEV SPACES
    Chua, Seng-Kee
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2019, 303 (02) : 519 - 568