Nanostructured Anode Materials for Lithium Ion Batteries: Progress, Challenge and Perspective

被引:468
作者
Mahmood, Nasir [1 ]
Tang, Tianyu [1 ]
Hou, Yanglong [1 ]
机构
[1] Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing 100871, Peoples R China
关键词
anodes; energy density; lithium ion batteries; nanomaterials; nanostructures; NITROGEN-DOPED GRAPHENE; ENHANCED ELECTROCHEMICAL PERFORMANCE; SOLID-ELECTROLYTE INTERPHASE; HIGH-CAPACITY ANODE; X-RAY-ABSORPTION; LONG-CYCLE-LIFE; IN-SITU; CARBON NANOTUBES; NEGATIVE-ELECTRODE; NANOCOMPOSITE ANODES;
D O I
10.1002/aenm.201600374
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium ion batteries (LIBs) possess energy densities higher than those of the conventional batteries, but their lower power densities and poor cycling lives are critical challenges for their applications to electric vehicles (EVs) or grid stations. The energy and power densities, as well as the life of LIBs are dependent on electrodes where sluggish diffusion control process and structural stability are the main concerns. Here, the lithium storage mechanism of anode materials and the Goodenough diagram to explain the potential of cell and key parameters to determine the performance of an anode are highlighted. The cost reduction parameters and the availability of anode materials for future batteries on the basis of their resources and performances will be discussed. Further, the recent progress on anode nanostructures and solutions to the associated challenges will be outlined. The use of several techniques to determine the dynamic variations in nanostructures including both structural and chemical changes of electrode nanostructures during cycling as well as the limitations for high load applications will be explained. Finally, the concluding remarks will highlight the characteristics for both anode and cathode for better choice of electrode combinations in the full batteries.
引用
收藏
页数:22
相关论文
共 206 条
[1]   Nanostructured Si(i-x)Gex for Tunable Thin Film Lithium-Ion Battery Anodes [J].
Abel, Paul R. ;
Chockla, Aaron M. ;
Lin, Yong-Mao ;
Holmberg, Vincent C. ;
Harris, Justin T. ;
Korgel, Brian A. ;
Heller, Adam ;
Mullins, C. Buddie .
ACS NANO, 2013, 7 (03) :2249-2257
[2]  
Abouimrane A., 2015, Patent No. [US 9054373 B2, 9054373]
[3]   Thermal stability of active/inactive nanocomposite anodes based on Cu2Sb in lithium-ion batteries [J].
Allcorn, Eric ;
Kim, Sang-Ok ;
Manthiram, Arumugam .
JOURNAL OF POWER SOURCES, 2015, 299 :501-508
[4]   Porous Electrode Materials for Lithium-Ion Batteries - How to Prepare Them and What Makes Them Special [J].
Anh Vu ;
Qian, Yuqiang ;
Stein, Andreas .
ADVANCED ENERGY MATERIALS, 2012, 2 (09) :1056-1085
[5]  
[Anonymous], 1996, USABC EL VEH BATT TE
[6]   Carbon Aerogels and Monoliths: Control of Porosity and Nanoarchitecture via Sol-Gel routes [J].
Antonietti, Markus ;
Fechler, Nina ;
Fellinger, Tim-Patrick .
CHEMISTRY OF MATERIALS, 2014, 26 (01) :196-210
[7]   LITHIUM ELECTRODE CYCLEABILITY AND MORPHOLOGY DEPENDENCE ON CURRENT-DENSITY [J].
ARAKAWA, M ;
TOBISHIMA, S ;
NEMOTO, Y ;
ICHIMURA, M ;
YAMAKI, J .
JOURNAL OF POWER SOURCES, 1993, 43 (1-3) :27-35
[8]   Evaluating the performance of nanostructured materials as lithium-ion battery electrodes [J].
Armstrong, Mark J. ;
O'Dwyer, Colm ;
Macklin, William J. ;
Holmes, Justin. D. .
NANO RESEARCH, 2014, 7 (01) :1-62
[9]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[10]   Mo3Sb7 as a very fast anode material for lithium-ion and sodium-ion batteries [J].
Baggetto, Loic ;
Allcorn, Eric ;
Unocic, Raymond R. ;
Manthiram, Arumugam ;
Veith, Gabriel M. .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (37) :11163-11169