Well-posed boundary conditions for the Navier-Stokes equations

被引:88
|
作者
Nordström, J [1 ]
Svärd, M
机构
[1] Swedish Def Res Agcy, Div Syst Technol, Dept Computat Phys, SE-16490 Stockholm, Sweden
[2] Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
关键词
well-posed problems; boundary conditions; Navier-Stokes equations; energy estimates; initial boundary value problems; stability;
D O I
10.1137/040604972
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we propose a general procedure that allows us to determine both the number and type of boundary conditions for time dependent partial differentia equations. With those, well-posedness can be proven for a general initial-boundary value problem. The procedure is exemplifie on the linearized Navier-Stokes equations in two and three space dimensions on a general domain.
引用
收藏
页码:1231 / 1255
页数:25
相关论文
共 50 条
  • [41] Lp-THEORY FOR THE NAVIER-STOKES EQUATIONS WITH PRESSURE BOUNDARY CONDITIONS
    Amrouche, Cherif
    Seloula, Nour El Houda
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2013, 6 (05): : 1113 - 1137
  • [42] On the weak solutions to steady Navier-Stokes equations with mixed boundary conditions
    Hou, Yanren
    Pei, Shuaichao
    MATHEMATISCHE ZEITSCHRIFT, 2019, 291 (1-2) : 47 - 54
  • [43] A Pressure Associated with a Weak Solution to the Navier-Stokes Equations with Navier's Boundary Conditions
    Neustupa, Jiri
    Necasova, Sarka
    Kucera, Petr
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2020, 22 (03)
  • [44] Boundary conditions on artificial frontiers for incompressible and compressible Navier-Stokes equations
    Bruneau, CH
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (02): : 303 - 314
  • [45] INLET AND OUTLET OPEN BOUNDARY CONDITIONS FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    Galusinski, C.
    Mazoyer, C.
    Meradji, S.
    Molcard, A.
    Ourmieres, Y.
    TOPICAL PROBLEMS OF FLUID MECHANICS 2017, 2017, : 139 - 146
  • [46] Navier-Stokes equations in thin 3D domains with navier boundary conditions
    Iftimie, Dragos
    Raugel, Genevieve
    Sell, George R.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (03) : 1083 - 1156
  • [47] Boundary conditions and estimates for the linearized Navier-Stokes equations on staggered grids
    Kress, W
    Nilsson, J
    COMPUTERS & FLUIDS, 2003, 32 (08) : 1093 - 1112
  • [48] Weak imposition of boundary conditions for the Navier-Stokes equations by a penalty method
    Caglar, Atife
    Liakos, Anastasios
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2009, 61 (04) : 411 - 431
  • [49] Steady solutions of the Navier-Stokes equations with threshold slip boundary conditions
    Le Roux, C.
    Tani, A.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (05) : 595 - 624
  • [50] On the weak solutions to steady Navier-Stokes equations with mixed boundary conditions
    Yanren Hou
    Shuaichao Pei
    Mathematische Zeitschrift, 2019, 291 : 47 - 54