Well-posed boundary conditions for the Navier-Stokes equations

被引:88
|
作者
Nordström, J [1 ]
Svärd, M
机构
[1] Swedish Def Res Agcy, Div Syst Technol, Dept Computat Phys, SE-16490 Stockholm, Sweden
[2] Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
关键词
well-posed problems; boundary conditions; Navier-Stokes equations; energy estimates; initial boundary value problems; stability;
D O I
10.1137/040604972
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we propose a general procedure that allows us to determine both the number and type of boundary conditions for time dependent partial differentia equations. With those, well-posedness can be proven for a general initial-boundary value problem. The procedure is exemplifie on the linearized Navier-Stokes equations in two and three space dimensions on a general domain.
引用
收藏
页码:1231 / 1255
页数:25
相关论文
共 50 条
  • [22] Slip Boundary Conditions for the Compressible Navier-Stokes Equations
    Aoki, Kazuo
    Baranger, Celine
    Hattori, Masanari
    Kosuge, Shingo
    Martalo, Giorgio
    Mathiaud, Julien
    Mieussens, Luc
    JOURNAL OF STATISTICAL PHYSICS, 2017, 169 (04) : 744 - 781
  • [23] Stability Analysis for the Incompressible Navier-Stokes Equations with Navier Boundary Conditions
    Ding, Shijin
    Li, Quanrong
    Xin, Zhouping
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2018, 20 (02) : 603 - 629
  • [24] Navier-stokes equations with navier boundary conditions for a bounded domain in the plane
    Kelliher, James P.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (01) : 210 - 232
  • [25] VARIOUS BOUNDARY CONDITIONS FOR NAVIER-STOKES EQUATIONS IN BOUNDED LIPSCHITZ DOMAINS
    Monniaux, Sylvie
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2013, 6 (05): : 1355 - 1369
  • [26] Construction of Boundary Conditions for Navier-Stokes Equations from the Moment System
    Li, Ruo
    Yang, Yichen
    Zhou, Yizhou
    JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (06)
  • [27] Navier-Stokes equations with Navier boundary condition
    Amrouche, Cherif
    Rejaiba, Ahmed
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (17) : 5091 - 5112
  • [28] Weak-imposition of boundary conditions for the Navier-Stokes equations
    Çaglar, A
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 149 (01) : 119 - 145
  • [29] Modified Navier-Stokes equations for the outflow boundary conditions in hemodynamics
    Arbia, G.
    Vignon-Clementel, I. E.
    Hsia, T. -Y.
    Gerbeau, J. -F.
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2016, 60 : 175 - 188
  • [30] Local solutions to the Navier-Stokes equations with mixed boundary conditions
    Kucera, P
    Skalák, Z
    ACTA APPLICANDAE MATHEMATICAE, 1998, 54 (03) : 275 - 288