Pseudo-Hermiticity of Hamiltonians under imaginary shift of the coordinate: real spectrum of complex potentials

被引:109
作者
Ahmed, Z [1 ]
机构
[1] Bhabha Atom Res Ctr, Div Nucl Phys, Bombay 400085, Maharashtra, India
关键词
D O I
10.1016/S0375-9601(01)00622-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose that the real spectrum and the orthogonality of the states for several known complex potentials of both types, PT-symmetric and non-PT-symmetric, can be understood in terms of currently proposed eta -pseudo-Hermiticity (A. Mostafazadeh, math-ph/0107001) of a Hamiltonian, provided the Hermitian linear automorphism, eta, is introduced as e(-thetap) which affects an imaginary shaft of the coordinate: e-(thetap)xe(thetap) = x + i theta. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:19 / 22
页数:4
相关论文
共 18 条
[11]   A PT-invariant potential with complex QES eigenvalues [J].
Khare, A ;
Mandal, BP .
PHYSICS LETTERS A, 2000, 272 (1-2) :53-56
[12]  
KRETSCHMER R, QUANTPH0105054
[13]   Systematic search for PT-symmetric potentials with real energy spectra [J].
Lévai, G ;
Znojil, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (40) :7165-7180
[14]  
MOSTAFAZADEH A, IN PRESS J MATH PHYS
[15]  
PRUDNIKOV AP, 1983, INTEGRALS SUMS, V2
[16]   Shape invariant potentials with PT symmetry [J].
Znojil, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (07) :L61-L62
[17]   PJ -: symmetric harmonic oscillators [J].
Znojil, M .
PHYSICS LETTERS A, 1999, 259 (3-4) :220-223
[18]  
ZNOJIL M, MATHPH0104012