Pseudo-Hermiticity of Hamiltonians under imaginary shift of the coordinate: real spectrum of complex potentials

被引:109
作者
Ahmed, Z [1 ]
机构
[1] Bhabha Atom Res Ctr, Div Nucl Phys, Bombay 400085, Maharashtra, India
关键词
D O I
10.1016/S0375-9601(01)00622-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose that the real spectrum and the orthogonality of the states for several known complex potentials of both types, PT-symmetric and non-PT-symmetric, can be understood in terms of currently proposed eta -pseudo-Hermiticity (A. Mostafazadeh, math-ph/0107001) of a Hamiltonian, provided the Hermitian linear automorphism, eta, is introduced as e(-thetap) which affects an imaginary shaft of the coordinate: e-(thetap)xe(thetap) = x + i theta. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:19 / 22
页数:4
相关论文
共 18 条
[1]   Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-invariant potential (vol A282, pg 343, 2001) [J].
Ahmed, Z .
PHYSICS LETTERS A, 2001, 287 (3-4) :295-296
[2]   Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-invariant potential [J].
Ahmed, Z .
PHYSICS LETTERS A, 2001, 282 (06) :343-348
[3]   sl(2, C) as a complex Lie algebra and the associated non-Hermitian Hamiltonians with real eigenvalues [J].
Bagchi, B ;
Quesne, C .
PHYSICS LETTERS A, 2000, 273 (5-6) :285-292
[4]   A new PT-symmetric complex Hamiltonian with a real spectrum [J].
Bagchi, B ;
Roychoudhury, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (01) :L1-L3
[5]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[6]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229
[7]   Variational ansatz for PJ-symmetric quantum mechanics [J].
Bender, CM ;
Cooper, F ;
Meisinger, PN ;
Savage, VM .
PHYSICS LETTERS A, 1999, 259 (3-4) :224-231
[8]   Schrodinger operators with complex potential but real spectrum [J].
Cannata, F ;
Junker, G ;
Trost, J .
PHYSICS LETTERS A, 1998, 246 (3-4) :219-226
[9]  
JAPARIDZE GS, QUANTPH0104077
[10]  
JAPARIDZE GS, COMMUNICATION