Non-local gradient dependent operators

被引:97
作者
Bjorland, C. [1 ]
Caffarelli, L. [1 ]
Figalli, A. [1 ]
机构
[1] UT Austin Math, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Quasilinear non-local operators; Tug-of-war; Existence; Regularity; TUG-OF-WAR; VISCOSITY SOLUTIONS; WEAK SOLUTIONS; REGULARITY;
D O I
10.1016/j.aim.2012.03.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a general class of "quasilinear non-local equations" depending on the gradient which arises from tug-of-war games. We establish a C-alpha/C-1,C-alpha/C-2,C-alpha. regularity theory for these equations (the kind of regularity depending on the assumptions on the kernel), and we construct different non-local approximations of the p-Laplacian. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1859 / 1894
页数:36
相关论文
共 16 条
[11]   On the equivalence of viscosity solutions and weak solutions or a quasi-linear equation [J].
Juutinen, P ;
Lindqvist, P ;
Manfredi, JJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (03) :699-717
[13]   Tug-of-war with noise:: A game-theoretic view of the p-Laplacian [J].
Peres, Yuval ;
Sheffield, Scott .
DUKE MATHEMATICAL JOURNAL, 2008, 145 (01) :91-120
[14]   REGULARITY FOR A CLASS OF NONLINEAR ELLIPTIC SYSTEMS [J].
UHLENBECK, K .
ACTA MATHEMATICA, 1977, 138 (3-4) :219-240
[15]  
Uraltseva N.N., 1968, Zap. Na. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), V7, P184
[16]   COMPACTNESS METHODS FOR CERTAIN DEGENERATE ELLIPTIC-EQUATIONS [J].
WANG, L .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 107 (02) :341-350