Caffeine: Towards Uniformed Representation and Acceleration for Deep Convolutional Neural Networks

被引:147
|
作者
Zhan, Chen [1 ,2 ,3 ]
Fang, Zhenman [2 ]
Zhou, Peipei [2 ]
Pan, Peichen [3 ]
Cong, Jason [1 ,2 ,3 ]
机构
[1] Peking Univ, Ctr Energy Efficient Comp & Applicat, Beijing, Peoples R China
[2] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
[3] Falcon Comp Inc, Los Angeles, CA USA
关键词
COPROCESSOR;
D O I
10.1145/2966986.2967011
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
With the recent advancement of multilayer convolutional neural networks (CNN), deep learning has achieved amazing success in many areas, especially in visual content understanding and classification. To improve the performance and energy-efficiency of the computation-demanding CNN, the FPGA-based acceleration emerges as one of the most attractive alternatives. In this paper we design and implement Caffeine, a hardware/software co-designed library to efficiently accelerate the entire CNN on FPGAs. First, we propose a uniformed convolutional matrix-multiplication representation for both computation-intensive convolutional layers and communication-intensive fully connected (FCN) layers. Second, we design Caffeine with the goal to maximize the underlying FPGA computing and bandwidth resource utilization, with a key focus on the bandwidth optimization by the memory access reorganization not studied in prior work. Moreover, we implement Caffeine in the portable high-level synthesis and provide various hardware/software definable parameters for user configurations. Finally, we also integrate Caffeine into the industry-standard software deep learning framework Caffe. We evaluate Caffeine and its integration with Caffe by implementing VGG16 and AlexNet network on multiple FPGA platforms. Caffeine achieves a peak performance of 365 GOPS on Xilinx KU060 FPGA and 636 GOPS on Virtex7 690t FPGA. This is the best published result to our best knowledge. We achieve more than 100x speedup on FCN layers over previous FPGA accelerators. An end-to-end evaluation with Caffe integration shows up to 7.3x and 43.5x performance and energy gains over Caffe on a 12-core Xeon server, and 1.5x better energy-efficiency over the GPU implementation on a medium-sized FPGA (KU060). Performance projections to a system with a high-end FPGA (Virtex7 690t) shows even higher gains.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Fpar: filter pruning via attention and rank enhancement for deep convolutional neural networks acceleration
    Chen, Yanming
    Wu, Gang
    Shuai, Mingrui
    Lou, Shubin
    Zhang, Yiwen
    An, Zhulin
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (07) : 2973 - 2985
  • [42] COLOR REPRESENTATION IN DEEP NEURAL NETWORKS
    Engilberge, Martin
    Collins, Edo
    Susstrunk, Sabine
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 2786 - 2790
  • [43] The Representation of Speech in Deep Neural Networks
    Scharenborg, Odette
    van der Gouw, Nikki
    Larson, Martha
    Marchiori, Elena
    MULTIMEDIA MODELING, MMM 2019, PT II, 2019, 11296 : 194 - 205
  • [44] TOWARDS GRADING GLEASON SCORE USING GENERICALLY TRAINED DEEP CONVOLUTIONAL NEURAL NETWORKS
    Kallen, Hanna
    Molin, Jesper
    Heyden, Anders
    Lundstrom, Claes
    Astrom, Kalle
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 1163 - 1167
  • [45] TOWARDS DEEP UNSUPERVISED SAR DESPECKLING WITH BLIND-SPOT CONVOLUTIONAL NEURAL NETWORKS
    Molini, Andrea Bordone
    Valsesia, Diego
    Fracastoro, Giulia
    Magli, Enrico
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2507 - 2510
  • [46] Towards resource-frugal deep convolutional neural networks for hyperspectral image segmentation
    Nalepa, Jakub
    Antoniak, Marek
    Myller, Michal
    Lorenzo, Pablo Ribalta
    Marcinkiewicz, Michal
    MICROPROCESSORS AND MICROSYSTEMS, 2020, 73
  • [47] Towards End-to-End Speech Recognition with Deep Multipath Convolutional Neural Networks
    Zhang, Wei
    Zhai, Minghao
    Huang, Zilong
    Liu, Chen
    Li, Wei
    Cao, Yi
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PART VI, 2019, 11745 : 332 - 341
  • [48] Towards Understanding the Invertibility of Convolutional Neural Networks
    Gilbert, Anna C.
    Zhang, Yi
    Lee, Kibok
    Zhang, Yuting
    Lee, Honglak
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1703 - 1710
  • [49] Towards Robust Compressed Convolutional Neural Networks
    Wijayanto, Arie Wahyu
    Choong, Jun Jin
    Madhawa, Kaushalya
    Murata, Tsuyoshi
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2019, : 168 - 175
  • [50] Towards dropout training for convolutional neural networks
    Wu, Haibing
    Gu, Xiaodong
    NEURAL NETWORKS, 2015, 71 : 1 - 10