High-Performance Large-Area Organic Solar Cells Enabled by Sequential Bilayer Processing via Nonhalogenated Solvents

被引:172
作者
Dong, Sheng [1 ]
Zhang, Kai [1 ]
Xie, Boming [1 ]
Xiao, Jingyang [1 ]
Yip, Hin-Lap [1 ]
Yan, He [2 ,3 ]
Huang, Fei [1 ]
Cao, Yong [1 ]
机构
[1] South China Univ Technol, State Key Lab Luminescent Mat & Devices, Inst Polymer Optoelect Mat & Devices, Guangzhou 510640, Guangdong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Chinese Natl Engn Res Ctr Tissue Restorat & Recon, Dept Chem, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[3] Hong Kong Univ Sci & Technol, Chinese Natl Engn Res Ctr Tissue Restorat & Recon, Hong Kong Branch, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
关键词
blade-coating; green solvents; highly efficient; large area; sequential deposition; HIGH-EFFICIENCY; POLYMER; HETEROJUNCTION; MORPHOLOGY; OPTIMIZATION; ACCEPTOR; DEVICE;
D O I
10.1002/aenm.201802832
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
While the performance of laboratory-scale organic solar cells (OSCs) continues to grow over 13%, the development of high-efficiency large area OSCs still lags. One big challenge is that the formation of bulk heterojunction morphology is an extremely complicated process and the formed morphology is also a highly delicate balance involving many parameters such as domain size, purity, miscibility, etc. The morphology control becomes much more challenging when the device area is scaled up. In this work, a highly efficient (12.9%) nonfullerene organic solar cell processed using a sequential bilayer deposition method from nonhalogenated solvents, is reported. Using this bilayer processing method, the organic solar cells can be scaled up to a larger area (1 cm(2)) while maintaining a high performance of 11.4% using doctor-blade-coating technique. Moreover, as the acceptor is hidden behind the polymer donor, the possibility of degradation by sunlight is lessened. Thus, improved photostability is observed in the bilayer structure device when compared with the bulk heterojunction device. This method offers a truly compatible processing technique for printing large-area OSC modules.
引用
收藏
页数:7
相关论文
共 41 条
[1]   Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules [J].
Andersen, Thomas R. ;
Dam, Henrik F. ;
Hosel, Markus ;
Helgesen, Martin ;
Carle, Jon E. ;
Larsen-Olsen, Thue T. ;
Gevorgyan, Suren A. ;
Andreasen, Jens W. ;
Adams, Jens ;
Li, Ning ;
Machui, Florian ;
Spyropoulos, George D. ;
Ameri, Tayebeh ;
Lemaitre, Noella ;
Legros, Mathilde ;
Scheel, Arnulf ;
Gaiser, Detlef ;
Kreul, Kilian ;
Berny, Stephane ;
Lozman, Owen R. ;
Nordman, Sirpa ;
Valimaki, Marja ;
Vilkman, Marja ;
Sondergaard, Roar. R. ;
Jorgensen, Mikkel ;
Brabec, Christoph J. ;
Krebs, Frederik C. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (09) :2925-2933
[2]   Reappraising the Need for Bulk Heterojunctions in Polymer-Fullerene Photovoltaics: The Role of Carrier Transport in All-Solution-Processed P3HT/PCBM Bilayer Solar Cells [J].
Ayzner, Alexander L. ;
Tassone, Christopher J. ;
Tolbert, Sarah H. ;
Schwartz, Benjamin J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (46) :20050-20060
[3]   Morphology Evolution in High-Performance Polymer Solar Cells Processed from Nonhalogenated Solvent [J].
Cai, Wanzhu ;
Liu, Peng ;
Jin, Yaocheng ;
Xue, Qifan ;
Liu, Feng ;
Russell, Thomas P. ;
Huang, Fei ;
Yip, Hin-Lap ;
Cao, Yong .
ADVANCED SCIENCE, 2015, 2 (08)
[4]   A Semitransparent Inorganic Perovskite Film for Overcoming Ultraviolet Light Instability of Organic Solar Cells and Achieving 14.03% Efficiency [J].
Chen, Weijie ;
Zhang, Jingwen ;
Xu, Guiying ;
Xue, Rongming ;
Li, Yaowen ;
Zhou, Yinhua ;
Hou, Jianhui ;
Li, Yongfang .
ADVANCED MATERIALS, 2018, 30 (21)
[5]   Efficient and stable organic solar cells via a sequential process [J].
Cheng, Pei ;
Yan, Cenqi ;
Wu, Yang ;
Dai, Shuixing ;
Ma, Wei ;
Zhan, Xiaowei .
JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (34) :8086-8093
[6]   Layer-by-Layer Solution-Processed Low-Bandgap Polymer-PC61BM Solar Cells with High Efficiency [J].
Cheng, Pei ;
Hou, Jianhui ;
Li, Yongfang ;
Zhan, Xiaowei .
ADVANCED ENERGY MATERIALS, 2014, 4 (09)
[7]   Time-Resolved Neutron Reflectometry and Photovoltaic Device Studies on Sequentially Deposited PCDTBT-Fullerene Layers [J].
Clulow, Andrew J. ;
Tao, Chen ;
Lee, Kwan H. ;
Velusamy, Marappan ;
McEwan, Jake A. ;
Shaw, Paul E. ;
Yamada, Norifumi L. ;
James, Michael ;
Burn, Paul L. ;
Gentle, Ian R. ;
Meredith, Paul .
LANGMUIR, 2014, 30 (38) :11474-11484
[8]   Toward Efficient Polymer Solar Cells Processed by a Solution-Processed Layer-By-Layer Approach [J].
Cui, Yong ;
Zhang, Shaoqing ;
Liang, Ningning ;
Kong, Jingyi ;
Yang, Chenyi ;
Yao, Huifeng ;
Ma, Lijiao ;
Hou, Jianhui .
ADVANCED MATERIALS, 2018, 30 (34)
[9]   Electron Collection as a Limit to Polymer:PCBM Solar Cell Efficiency: Effect of Blend Microstructure on Carrier Mobility and Device Performance in PTB7:PCBM [J].
Foster, Samuel ;
Deledalle, Florent ;
Mitani, Akiko ;
Kimura, Toshio ;
Kim, Ki-Beom ;
Okachi, Takayuki ;
Kirchartz, Thomas ;
Oguma, Jun ;
Miyake, Kunihito ;
Durrant, James R. ;
Doi, Shuji ;
Nelson, Jenny .
ADVANCED ENERGY MATERIALS, 2014, 4 (14)
[10]   Influence of D/A Ratio on Photovoltaic Performance of a Highly Efficient Polymer Solar Cell System [J].
Guo, Xia ;
Zhang, Maojie ;
Tan, Jiahui ;
Zhang, Shaoqing ;
Huo, Lijun ;
Hu, Wenping ;
Li, Yongfang ;
Hou, Jianhui .
ADVANCED MATERIALS, 2012, 24 (48) :6536-6541