Detecting Chemically Modified DNA Bases Using Surface-Enhanced Raman Spectroscopy

被引:72
作者
Barhoumi, Aoune [1 ]
Halas, Naomi J. [1 ,2 ,3 ]
机构
[1] Rice Univ, Dept Chem, Houston, TX 77005 USA
[2] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
[3] Rice Univ, Dept Bioengn, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
ADENINE METHYLATION; ESCHERICHIA-COLI; DAM METHYLATION; CANCER; 5-HYDROXYMETHYLCYTOSINE; 5-METHYLCYTOSINE; SCATTERING; CYTOSINE; TISSUES; GENOME;
D O I
10.1021/jz201423b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Post-translational modifications of DNA (changes in the chemical structure of individual bases that occur without changes in the DNA sequence) are known to alter gene expression. They are believed to result in frequently deleterious phenotypic changes, such as cancer. Methylation of adenine, methylation and hydroxymethylation of cytosine, and guanine oxidation are the primary DNA base modifications identified to date. Here we show it is possible to use surface-enhanced Raman spectroscopy (SERS) to detect these primary DNA base modifications. SERS detection of modified DNA bases is label-free and requires minimal additional sample preparation, reducing the possibility of additional chemical modifications induced prior to measurement. This approach shows the feasibility of DNA base modification assessment as a potentially routine analysis that may be further developed for clinical diagnostics.
引用
收藏
页码:3118 / 3123
页数:6
相关论文
共 42 条
[1]   Surface-enhanced Raman spectroscopy of DNA [J].
Barhoumi, Aoune ;
Zhang, Dongmao ;
Tam, Felicia ;
Halas, Naomi J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (16) :5523-5529
[2]   Label-Free Detection of DNA Hybridization Using Surface Enhanced Raman Spectroscopy [J].
Barhoumi, Aoune ;
Halas, Naomi J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (37) :12792-12793
[3]   The DNA methyltransferases of mammals [J].
Bestor, TH .
HUMAN MOLECULAR GENETICS, 2000, 9 (16) :2395-2402
[4]   DNA methylation patterns and epigenetic memory [J].
Bird, A .
GENES & DEVELOPMENT, 2002, 16 (01) :6-21
[5]   Quantitative comparison of genome-wide DNA methylation mapping technologies [J].
Bock, Christoph ;
Tomazou, Eleni M. ;
Brinkman, Arie B. ;
Mueller, Fabian ;
Simmer, Femke ;
Gu, Hongcang ;
Jaeger, Natalie ;
Gnirke, Andreas ;
Stunnenberg, Hendrik G. ;
Meissner, Alexander .
NATURE BIOTECHNOLOGY, 2010, 28 (10) :1106-U196
[6]   Controlled Plasmonic Nanostructures for Surface-Enhanced Spectroscopy and Sensing [J].
Camden, Jon P. ;
Dieringer, Jon A. ;
Zhao, Jing ;
Van Duyne, Richard P. .
ACCOUNTS OF CHEMICAL RESEARCH, 2008, 41 (12) :1653-1661
[7]   Sensitive detection of DNA methylation [J].
Cottrell, SE ;
Laird, PW .
EPIGENETICS IN CANCER PREVENTION: EARLY DETECTION AND RISK ASSESSMENT, 2003, 983 :120-130
[8]  
David C., 2010, NANOTECHNOLOGY, P21
[9]   AMOUNT AND DISTRIBUTION OF 5-METHYLCYTOSINE IN HUMAN DNA FROM DIFFERENT TYPES OF TISSUES OR CELLS [J].
EHRLICH, M ;
GAMASOSA, MA ;
HUANG, LH ;
MIDGETT, RM ;
KUO, KC ;
MCCUNE, RA ;
GEHRKE, C .
NUCLEIC ACIDS RESEARCH, 1982, 10 (08) :2709-2721
[10]   Molecular origins of cancer: Epigenetics in cancer [J].
Esteller, Manel .
NEW ENGLAND JOURNAL OF MEDICINE, 2008, 358 (11) :1148-1159