Lagrangian descriptors and the action integral of classical mechanics

被引:8
作者
Garcia-Garrido, Victor J. [1 ]
Wiggins, Stephen [2 ]
机构
[1] Univ Alcala, Dept Fis & Matemat, Alcala De Henares 28871, Spain
[2] Univ Bristol, Sch Math, Fry Bldg, Woodland Rd, Bristol BS8 1UG, Glos, England
基金
英国工程与自然科学研究理事会;
关键词
Lagrangian descriptors; Action functional; Phase space structure; Hamiltonian systems; GEOMETRY;
D O I
10.1016/j.physd.2022.133206
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we bring together the method of Lagrangian descriptors and the principle of least action, or more precisely, of stationary action, in both deterministic and stochastic settings. In particular, we show how the action can be used as a Lagrangian descriptor. This provides a direct connection between Lagrangian descriptors and Hamiltonian mechanics, and we illustrate this connection with benchmark examples. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 47 条
[41]  
Scheeres DJ, 2012, J ASTRONAUT SCI, V59, P63
[42]   The geometry of reaction dynamics [J].
Uzer, T ;
Jaffé, C ;
Palacián, J ;
Yanguas, P ;
Wiggins, S .
NONLINEARITY, 2002, 15 (04) :957-992
[43]   Direct construction of a dividing surface of minimal flux for multi-degree-of-freedom systems that cannot be recrossed [J].
Waalkens, H ;
Wiggins, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (35) :L435-L445
[44]   Impenetrable barriers in phase-space [J].
Wiggins, S ;
Wiesenfeld, L ;
Jaffé, C ;
Uzer, T .
PHYSICAL REVIEW LETTERS, 2001, 86 (24) :5478-5481
[45]  
Wiggins S, 2003, INTRO APPL NONLINEAR, V2, DOI DOI 10.1007/B97481
[46]  
Wiggins S., 2014, NORMALLY HYPERBOLIC
[47]   The role of normally hyperbolic invariant manifolds (NHIMS) in the context of the phase space setting for chemical reaction dynamics [J].
Wiggins, Stephen .
REGULAR & CHAOTIC DYNAMICS, 2016, 21 (06) :621-638