Counting horoballs and rational geodesics

被引:7
作者
Belabas, K
Hersonsky, S
Paulin, F
机构
[1] Univ Paris 11, Math Lab, CNRS, UMR 8628, F-91405 Orsay, France
[2] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
关键词
D O I
10.1112/S0024609301008244
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a geometrically finite pinched negatively curved Riemannian manifold with at least one cusp. The asymptotics of the number of geodesics in M starting from and returning to a given cusp, and of the number of horoballs at parabolic fixed points in the universal cover of M, are studied in this paper. The case of SL(2,Z), and of Bianchi groups, is developed.
引用
收藏
页码:606 / 612
页数:7
相关论文
共 10 条
[1]  
Bourdon M., 1995, Enseign. Math. (2), V41, P63
[2]   GEOMETRICAL FINITENESS WITH VARIABLE NEGATIVE CURVATURE [J].
BOWDITCH, BH .
DUKE MATHEMATICAL JOURNAL, 1995, 77 (01) :229-274
[3]   Equidistribution of parabolic fixed points in the limit set of Kleinian groups [J].
Cosentino, S .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1999, 19 :1437-1484
[4]  
Dal'Bo F, 2000, ISRAEL J MATH, V118, P109, DOI 10.1007/BF02803518
[5]  
Ghys E., 1990, Progress in Mathematics, V83
[6]  
HERSONSKY S, 1999, DIOPHANTINE APPROXIM, V1
[7]  
Narkiewicz W., 1990, Elementary and analytic theory of algebraic numbers, Vsecond
[8]  
Tatuzawa T., 1973, SCI PAP COLL GEN U T, V23, P73
[9]  
TENENBAUM G, 1990, PUB I E CARTAN, V13
[10]  
Walfisz A., 1963, MATH FORSCHUNGSBERIC, VXV