Sparse MnO2 nanowires clusters for high-performance supercapacitors

被引:19
|
作者
Yuan, Y. F. [1 ]
Pei, Y. B. [1 ]
Guo, S. Y. [1 ]
Fang, J. [1 ]
Yang, J. L. [1 ]
机构
[1] Zhejiang Sci Tech Univ, Coll Machinery & Automat, Hangzhou 310018, Peoples R China
关键词
MnO2; Supercapacitor; Nanocrystalline materials; Energy storage and conversion; ELECTROCHEMICAL PROPERTIES; COMPOSITE; NANOROD; FILM;
D O I
10.1016/j.matlet.2012.01.046
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
MnO2 nanowires clusters are electrodeposited onto Ni foam by a cyclic voltammetric technique. MnO2 nanowires, about 20 nm in diameter and up to 200 nm in length, present a sparse grass clusters structure. As cathode material for supercapacitors, MnO2 nanowires clusters exhibit superior pseudocapacitance performances with high specific capacitances (1080 Fg(-1) at 4 Ag-1 and 415 Fg(-1) at 30 Ag-1) as well as excellent large-current cycling stability, making it suitable for high-performance supercapacitor application. The improved pseudocapacitance performances are attributed to small size, large surface area and high dispersion degree of MnO2 NWs, as well as 3-Dimension structure of Ni foam, which provide faster ion and electron transfer, larger reaction surface area, higher electrochemical activity, leading to faster reaction kinetics and higher material utilization ratio. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:194 / 197
页数:4
相关论文
共 50 条
  • [1] High-performance α-MnO2 nanowire electrode for supercapacitors
    Su, Xiaohui
    Yu, Lin
    Cheng, Gao
    Zhang, Huanhua
    Sun, Ming
    Zhang, Xiaofei
    APPLIED ENERGY, 2015, 153 : 94 - 100
  • [2] Hierarchically structured MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors
    Sun, Zhipeng
    Firdoz, Shaik
    Yap, Esther Ying-Xuan
    Li, Lan
    Lu, Xianmao
    NANOSCALE, 2013, 5 (10) : 4379 - 4387
  • [3] Multilayered architecture of graphene nanosheets and MnO2 nanowires as an electrode material for high-performance supercapacitors
    Wu, Mao-Sung
    Lin, Chih-Jui
    Ho, Chia-Ling
    ELECTROCHIMICA ACTA, 2012, 81 : 44 - 48
  • [4] Sandwich structured MnO2/carbon nanosheet/MnO2 composite for high-performance supercapacitors
    Hong, Xiaodong
    Wang, Xu
    Li, Yang
    Fu, Jiawei
    Liang, Bing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 889
  • [5] Worm-like amorphous MnO2 nanowires grown on textiles for high-performance flexible supercapacitors
    Yang, Peihua
    Li, Yuzhi
    Lin, Ziyin
    Ding, Yong
    Yue, Song
    Wong, Ching Ping
    Cai, Xiang
    Tan, Shaozao
    Mai, Wenjie
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (03) : 595 - 599
  • [6] MnO2 nanorod loaded activated carbon for high-performance supercapacitors
    Kour, Simran
    Tanwar, Shweta
    Sharma, A. L.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 910
  • [7] High-performance hierarchical MnO2/CNT electrode for multifunctional supercapacitors
    Zhou, Yang
    Cheng, Xinying
    Tynan, Benjamin
    Sha, Zhao
    Huang, Feng
    Islam, Mohammad S.
    Zhang, Jin
    Rider, Andrew N.
    Dai, Liming
    Chu, Dewei
    Wang, Da-Wei
    Han, Zhaojun
    Wang, Chun-Hui
    CARBON, 2021, 184 : 504 - 513
  • [8] Flexible hierarchical nanocomposites based on MnO2 nanowires/CoAl hydrotalcite/carbon fibers for high-performance supercapacitors
    Zhao, Jingwen
    Lu, Zhenzhi
    Shao, Mingfei
    Yan, Dongpeng
    Wei, Min
    Evans, David G.
    Duan, Xue
    RSC ADVANCES, 2013, 3 (04): : 1045 - 1049
  • [9] MnO2/carbon nanocomposite based on silkworm excrement for high-performance supercapacitors
    Pian Zhang
    Yun-hao Wu
    Hao-ran Sun
    Jia-qi Zhao
    Zhi-ming Cheng
    Xiao-hong Kang
    InternationalJournalofMineralsMetallurgyandMaterials, 2021, 28 (10) : 1735 - 1744
  • [10] Microwave-Assisted Synthesis and Characterization of γ-MnO2 for High-Performance Supercapacitors
    Lorena Cuéllar-Herrera
    Elsa Arce-Estrada
    Antonio Romero-Serrano
    José Ortiz-Landeros
    Román Cabrera-Sierra
    Cindy Tirado-López
    Aurelio Hernández-Ramírez
    Josué López-Rodríguez
    Journal of Electronic Materials, 2021, 50 : 5577 - 5589