Cystic fibrosis: bacterial pathogenesis and CFTR (cystic fibrosis transmembrane conductance regulator) modulators

被引:0
|
作者
Vargas-Roldan, Silvia Y. [1 ,2 ]
Lezana-Fernandez, Jose L. [3 ,4 ]
Cerna-Cortes, Jorge F. [2 ]
Partida-Sanchez, Santiago [5 ,6 ]
Santos-Preciado, Jose, I [1 ]
Rosales-Reyes, Roberto [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Med, Unidad Invest Med Expt, Ciudad De Mexico, Mexico
[2] Inst Politecn Nacl, Dept Microbiol, Lab Microbiol Mol, Escuela Nacl Ciencias Biol, Ciudad De Mexico, Mexico
[3] Hosp Infantil Mexico Dr Federico Gomez, Lab Fisiol Respiratoria & Clin Fibrosis Quist, Ciudad De Mexico, Mexico
[4] Assoc Mexicana Fibrosis Quist, Direcc Med, Ciudad De Mexico, Mexico
[5] Nationwide Childrens Hosp, Ctr Microbial Pathogenesis, Abigail Wexner Res Inst, Columbus, OH USA
[6] Ohio State Univ, Coll Med, Dept Pediat, Columbus, OH 43210 USA
来源
BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO | 2022年 / 79卷 / 04期
关键词
Cystic fibrosis; Pseudomonas aeruginosa; Burkholderia cenocepacia; CFTR modulators; VI SECRETION SYSTEM; PSEUDOMONAS-AERUGINOSA; ADAPTATION; POTENTIATOR; IVACAFTOR;
D O I
10.24875/BMHIM.21000128
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
Cystic fibrosis is an autosomal recessive inherited disease caused by mutations in the cystic fibrosis transmembrane con-ductance regulator gene (CFTR). CFTR is a protein that transports ions across the membrane of lung epithelial cells. Loss of its function leads to the production of thick sticky mucus, where various bacterial pathogens can establish and adapt, contributing to the gradual loss of lung function. In this review, evidence of the molecular mechanisms used by Pseudomonas aeruginosa and Burkholderia cenocepacia to survive and persist in the pulmonary environment will be provided. Additionally, new therapeutic strategies based on CFTR function modulators will be described.
引用
收藏
页码:215 / 221
页数:7
相关论文
共 50 条
  • [41] Listeria monocytogenes exploits cystic fibrosis transmembrane conductance regulator (CFTR) to escape the phagosome
    Radtke, Andrea L.
    Anderson, Kelsi L.
    Davis, Michael J.
    DiMagno, Matthew J.
    Swanson, Joel A.
    O'Riordan, Mary X.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (04) : 1633 - 1638
  • [42] Predictive value of cystic fibrosis transmembrane conductance regulator (CFTR) in the diagnosis of gastric cancer
    Liu, Haiyan
    Wu, Wenyong
    Liu, Yang
    Zhang, Changle
    Zhou, Zheng
    CLINICAL AND INVESTIGATIVE MEDICINE, 2014, 37 (04): : E226 - E232
  • [43] Eligibility of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) modulator therapies: cohort of cystic fibrosis registry of Türkiye
    Erdal, Meltem Akgul
    Buyuksahin, Halime Nayir
    Sen, Velat
    Kilinc, Ayse Ayzit
    Cokugras, Haluk
    Dogan, Guzide
    Yilmaz, Asli Imran
    Unal, Gokcen
    Serbes, Mahir
    Altintas, Derya Ufuk
    Arik, Elif
    Keskin, Ozlem
    Ozaslan, Mehmet Mustafa
    Karcioglu, Oguz
    Kose, Mehmet
    Basaran, Abdurrahman Erdem
    Cakir, Eylul Pinar
    Canitez, Yakup
    Ozdemir, Ali
    Harmanci, Koray
    Uytun, Salih
    Polat, Sanem Eryilmaz
    Hangul, Melih
    Yuksel, Hasan
    Ozcan, Gizem
    Korkmaz, Pervin
    Kilic, Mehmet
    Aydin, Zeynep Gokce Gayretli
    Caltepe, Gonul
    Can, Demet
    Dogru, Sibel
    Ozturk, Gokcen Kartal
    Suleyman, Ayse
    Topal, Erdem
    Ozsezen, Beste
    Hizal, Mina
    Demirdogen, Ezgi
    Ogun, Hamza
    Borekci, Sermin
    Yazan, Hakan
    Sen, Hadice Selimoglu
    Demir, Ayseguel Dogan
    Cakir, Erkan
    Eyuboglu, Tugba Sismanlar
    Emiralioglu, Nagehan
    Pekcan, Sevgi
    Ozcelik, Ugur
    Dogru, Deniz
    TURKISH JOURNAL OF PEDIATRICS, 2025, 67 (01) : 22 - 30
  • [44] AR-13 reduces antibiotic-resistant bacterial burden in cystic fibrosis phagocytes and improves cystic fibrosis transmembrane conductance regulator function
    Assani, Kaivon
    Shrestha, Chandra L.
    Rinehardt, Hannah
    Zhang, Shuzhong
    Robledo-Avila, Frank
    Wellmerling, Jack
    Partida-Sanchez, Santiago
    Cormet-Boyaka, Estelle
    Reynolds, Susan D.
    Schlesinger, Larry S.
    Kopp, Benjamin T.
    JOURNAL OF CYSTIC FIBROSIS, 2019, 18 (05) : 622 - 629
  • [45] Impact of Cystic Fibrosis Transmembrane Conductance Regulator Modulators on Maternal Outcomes During and After Pregnancy
    Jain, Raksha
    Peng, Giselle
    Lee, Minjae
    Keller, Ashley
    Cosmich, Sophia
    Reddy, Sarthak
    West, Natalie E.
    Kazmerski, Traci M.
    Goralski, Jennifer L.
    Flume, Patrick A.
    Roe, Andrea H.
    Hadjiliadis, Denis
    Uluer, Ahmet
    Mody, Sheila
    Ladores, Sigrid
    Taylor-Cousar, Jennifer L.
    CHEST, 2025, 167 (02) : 348 - 361
  • [46] A Review of Trikafta: Triple Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Modulator Therapy
    Zaher, Anas
    ElSaygh, Jude
    Elsori, Dalal
    ElSaygh, Hassan
    Sanni, Abdulsabar
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2021, 13 (07)
  • [47] Biosynthesis of cystic fibrosis transmembrane conductance regulator
    Pranke, Iwona M.
    Sermet-Gaudelus, Isabelle
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2014, 52 : 26 - 38
  • [48] Cystic Fibrosis Transmembrane Conductance Regulator Modulators for Personalized Drug Treatment of Cystic FibrosisProgress to Date
    Frédéric Becq
    Drugs, 2010, 70 : 241 - 259
  • [49] Identification of cystic fibrosis transmembrane regulator (CFTR) mutations in Chilean patients with cystic fibrosis
    Repetto, G
    Poggi, H
    Harris, P
    Navarro, H
    Sánchez, I
    Guiraldes, E
    Pérez, MA
    Boza, ML
    Hunter, B
    Wevar, ME
    Mediavilla, M
    Foradori, A
    REVISTA MEDICA DE CHILE, 2001, 129 (08) : 841 - 847
  • [50] A Review on the Use of Cystic Fibrosis Transmembrane Conductance Regulator Gene Modulators in Pediatric Patients
    Bitonti, Michael
    Fritts, Laura
    So, Tsz-Yin
    JOURNAL OF PEDIATRIC HEALTH CARE, 2019, 33 (03) : 356 - 364