Cystic fibrosis: bacterial pathogenesis and CFTR (cystic fibrosis transmembrane conductance regulator) modulators

被引:0
作者
Vargas-Roldan, Silvia Y. [1 ,2 ]
Lezana-Fernandez, Jose L. [3 ,4 ]
Cerna-Cortes, Jorge F. [2 ]
Partida-Sanchez, Santiago [5 ,6 ]
Santos-Preciado, Jose, I [1 ]
Rosales-Reyes, Roberto [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Med, Unidad Invest Med Expt, Ciudad De Mexico, Mexico
[2] Inst Politecn Nacl, Dept Microbiol, Lab Microbiol Mol, Escuela Nacl Ciencias Biol, Ciudad De Mexico, Mexico
[3] Hosp Infantil Mexico Dr Federico Gomez, Lab Fisiol Respiratoria & Clin Fibrosis Quist, Ciudad De Mexico, Mexico
[4] Assoc Mexicana Fibrosis Quist, Direcc Med, Ciudad De Mexico, Mexico
[5] Nationwide Childrens Hosp, Ctr Microbial Pathogenesis, Abigail Wexner Res Inst, Columbus, OH USA
[6] Ohio State Univ, Coll Med, Dept Pediat, Columbus, OH 43210 USA
来源
BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO | 2022年 / 79卷 / 04期
关键词
Cystic fibrosis; Pseudomonas aeruginosa; Burkholderia cenocepacia; CFTR modulators; VI SECRETION SYSTEM; PSEUDOMONAS-AERUGINOSA; ADAPTATION; POTENTIATOR; IVACAFTOR;
D O I
10.24875/BMHIM.21000128
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
Cystic fibrosis is an autosomal recessive inherited disease caused by mutations in the cystic fibrosis transmembrane con-ductance regulator gene (CFTR). CFTR is a protein that transports ions across the membrane of lung epithelial cells. Loss of its function leads to the production of thick sticky mucus, where various bacterial pathogens can establish and adapt, contributing to the gradual loss of lung function. In this review, evidence of the molecular mechanisms used by Pseudomonas aeruginosa and Burkholderia cenocepacia to survive and persist in the pulmonary environment will be provided. Additionally, new therapeutic strategies based on CFTR function modulators will be described.
引用
收藏
页码:215 / 221
页数:7
相关论文
共 48 条
[1]  
[Anonymous], CYSTIC FIBROSIS
[2]  
Bareil C, 2020, ARCH PEDIATRIE, V27, pES8, DOI 10.1016/S0929-693X(20)30044-0
[3]   Microbiology of Cystic Fibrosis Airway Disease [J].
Blanchard, Ana C. ;
Waters, Valerie J. .
SEMINARS IN RESPIRATORY AND CRITICAL CARE MEDICINE, 2019, 40 (06) :727-736
[4]   Inflammasome activation byPseudomonas aeruginosa'sExlApore-forming toxin is detrimental for the host [J].
Bouillot, Stephanie ;
Pont, Stephane ;
Gallet, Benoit ;
Moriscot, Christine ;
Deruelle, Vincent ;
Attree, Ina ;
Huber, Philippe .
CELLULAR MICROBIOLOGY, 2020, 22 (11)
[5]  
Cystic Fibrosis Foundation, DRUG DEV PIP
[6]   Real-World Safety of CFTR Modulators in the Treatment of Cystic Fibrosis: A Systematic Review [J].
Dagenais, Renee V. E. ;
Su, Victoria C. ;
Quon, Bradley S. .
JOURNAL OF CLINICAL MEDICINE, 2021, 10 (01) :1-56
[7]   New anti-pseudomonal agents for cystic fibrosis- still needed in the era of small molecule CFTR modulators? [J].
Davies, Jane C. ;
Martin, Isaac .
EXPERT OPINION ON PHARMACOTHERAPY, 2018, 19 (12) :1327-1336
[8]   Potentiator synergy in rectal organoids carrying S1251N, G551D, or F508de1 CFTR mutations [J].
Dekkers, Johanna F. ;
Van Mourik, Peter ;
Vonk, Annelotte M. ;
Kruisselbrink, Evelien ;
Berkers, Gitte ;
de Winter-de Groot, Karin M. ;
Janssens, Hettie M. ;
Bronsveld, Inez ;
van der Ent, Cornelis K. ;
de Jonge, Hugo R. ;
Beekman, Jeffrey M. .
JOURNAL OF CYSTIC FIBROSIS, 2016, 15 (05) :568-578
[9]   Novel antibiotic combinations proposed for treatment of Burkholderia cepacia complex infections [J].
El-Halfawy, Omar M. ;
Naguib, Marwa M. ;
Valvano, Miguel A. .
ANTIMICROBIAL RESISTANCE AND INFECTION CONTROL, 2017, 6
[10]  
Gonzalez-Saldana N., 2008, ACTA PEDIATR MEX, V29, P185