Some closed-form solutions for effective moduli of composites containing randomly oriented short fibers

被引:52
作者
Huang, JH [1 ]
机构
[1] Feng Chia Univ, Dept Mech Engn, Taichung 40745, Taiwan
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2001年 / 315卷 / 1-2期
关键词
short fibers; spheroidal inclusion; Mori-Tanaka theory; effective moduli;
D O I
10.1016/S0921-5093(01)01212-6
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This investigation presents an approach to obtain the effective moduli of both two- and three-dimensional, randomly oriented composites in terms of the shape and volume fraction of fibers. The composite fiber is treated as an spheroidal inclusion that enables its geometry ranging from short fiber to continuous fiber. To simulate spatial fiber orientation, a probability density function controlled by two Euler angles is introduced. Furthermore, based upon the Mori-Tanaka mean-field theory to account for the interaction between the fibers and matrix, an analytical approach is developed to assess the effective moduli of composites containing randomly oriented short fibers. In particular, when the fibers are uniformly distributed over a given region, closed-form solutions for the effective moduli of a two-phase composite are obtained for four special distributions of fiber orientations. Both two- and three-dimensional random orientations, resulting respectively in a transversely isotropic and a fully isotropic composite, are analyzed explicitly. Numerical examples have been given for an E-Glass/Epoxy composite. Analysis results indicate that the effective moduli are strongly affected by the volume fraction, the aspect ratio, and the orientation of fibers. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:11 / 20
页数:10
相关论文
共 19 条
[1]   THEORY OF MULTIPLE FRACTURE OF FIBROUS COMPOSITES [J].
AVESTON, J ;
KELLY, A .
JOURNAL OF MATERIALS SCIENCE, 1973, 8 (03) :352-362
[2]   A NEW APPROACH TO THE APPLICATION OF MORI-TANAKA THEORY IN COMPOSITE-MATERIALS [J].
BENVENISTE, Y .
MECHANICS OF MATERIALS, 1987, 6 (02) :147-157
[3]   The influence of aspect ratio of voids on the effective elastic moduli of foamed metals [J].
Chao, LP ;
Huang, JH ;
Huang, YS .
JOURNAL OF COMPOSITE MATERIALS, 1999, 33 (21) :2002-2016
[4]   EFFECTIVE STIFFNESS OF RANDOMLY ORIENTED FIBER COMPOSITES [J].
CHRISTENSEN, RM ;
WAALS, FM .
JOURNAL OF COMPOSITE MATERIALS, 1972, 6 (OCT) :518-+
[5]   THE DETERMINATION OF THE ELASTIC FIELD OF AN ELLIPSOIDAL INCLUSION, AND RELATED PROBLEMS [J].
ESHELBY, JD .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1957, 241 (1226) :376-396
[6]   MEASUREMENT OF FIBER ORIENTATION IN SHORT-FIBER COMPOSITES USING DIGITAL IMAGE-PROCESSING [J].
GADALAMARIA, F ;
PARSI, F .
POLYMER COMPOSITES, 1993, 14 (02) :126-131
[7]   LAMINATE ANALOGY FOR 2 AND 3 DIMENSIONAL COMPOSITE MATERIALS [J].
HALPIN, JC ;
JERINE, K ;
WHITNEY, JM .
JOURNAL OF COMPOSITE MATERIALS, 1971, 5 (JAN) :36-&
[8]   A VARIATIONAL APPROACH TO THE THEORY OF THE ELASTIC BEHAVIOUR OF MULTIPHASE MATERIALS [J].
HASHIN, Z ;
SHTRIKMAN, S .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1963, 11 (02) :127-140
[9]   Micromechanics determination of the effective properties of piezoelectric composites containing spatially oriented short fibers [J].
Huang, JH ;
Kuo, WS .
ACTA MATERIALIA, 1996, 44 (12) :4889-4898
[10]   Vibration response of laminated plates containing spheroidal inclusions [J].
Huang, JH .
COMPOSITE STRUCTURES, 2000, 50 (03) :269-277