PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: How single nucleotide polymorphism chips will advance our knowledge of factors controlling puberty and aid in selecting replacement beef females

被引:41
作者
Snelling, W. M. [1 ]
Cushman, R. A. [1 ]
Fortes, M. R. S. [2 ,3 ]
Reverter, A. [2 ]
Bennett, G. L. [1 ]
Keele, J. W. [1 ]
Kuehn, L. A. [1 ]
McDaneld, T. G. [1 ]
Thallman, R. M. [1 ]
Thomas, M. G. [4 ]
机构
[1] USDA ARS, US Meat Anim Res Ctr, Clay Ctr, NE 68933 USA
[2] CSIRO Livestock Ind, Queensland Biosci Precinct, Cooperat Res Ctr Beef Genet Technol, Brisbane, Qld 4067, Australia
[3] Univ Queensland, Sch Vet Sci, Gatton, Qld 4343, Australia
[4] New Mexico State Univ, Dept Anim & Range Sci, Las Cruces, NM 88003 USA
基金
美国食品与农业研究所;
关键词
beef cattle; fertility; genomics; puberty; GENOME-WIDE ASSOCIATION; ANTRAL FOLLICLE COUNT; QUANTITATIVE TRAIT LOCI; BIOLOGICAL TYPES; REPRODUCTIVE-PERFORMANCE; BREEDING VALUES; HEIFER PUBERTY; ESTROUS-CYCLE; CATTLE; COWS;
D O I
10.2527/jas.2011-4581
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
The promise of genomic selection is accurate prediction of the genetic potential of animals from their genotypes. Simple DNA tests might replace low-accuracy predictions for expensive or lowly heritable measures of puberty and fertility based on performance and pedigree. Knowing with some certainty which DNA variants (e. g., SNP) affect puberty and fertility is the best way to fulfill the promise. Several SNP from the BovineSNP50 assay have tentatively been associated with reproductive traits including age at puberty, antral follicle count, and pregnancy observed on different sets of heifers. However, sample sizes are too small and SNP density is too sparse to definitively determine genomic regions harboring causal variants affecting reproductive success. Additionally, associations between individual SNP and similar phenotypes are inconsistent across data sets, and genomic predictions do not appear to be globally applicable to cattle of different breeds. Discrepancies may be a result of different QTL segregating in the sampled populations, differences in linkage disequilibrium (LD) patterns such that the same SNP are not correlated with the same QTL, and spurious correlations with phenotype. Several approaches can be used independently or in combination to improve detection of genomic factors affecting heifer puberty and fertility. Larger samples and denser SNP will increase power to detect real associations with SNP having more consistent LD with underlying QTL. Meta-analysis combining results from different studies can also be used to effectively increase sample size. High-density genotyping with heifers pooled by pregnancy status or early and late puberty can be a cost-effective means to sample large numbers. Networks of genes, implicated by associations with multiple traits correlated with puberty and fertility, could provide insight into the complex nature of these traits, especially if corroborated by functional annotation, established gene interaction pathways, and transcript expression. Example analyses are provided to demonstrate how integrating information about gene function and regulation with statistical associations from whole-genome SNP genotyping assays might enhance knowledge of genomic mechanisms affecting puberty and fertility, enabling reliable DNA tests to guide heifer selection decisions.
引用
收藏
页码:1152 / U119
页数:15
相关论文
共 104 条
[1]   Confirmation of quantitative trait loci using a low-density single nucleotide polymorphism map for twinning and ovulation rate on bovine chromosome 51,2 [J].
Allan, M. F. ;
Kuehn, L. A. ;
Cushman, R. A. ;
Snelling, W. M. ;
Echternkamp, S. E. ;
Thallman, R. M. .
JOURNAL OF ANIMAL SCIENCE, 2009, 87 (01) :46-56
[2]  
Alvarez P, 2000, J ANIM SCI, V78, P1291
[3]  
ANDERSEN KJ, 1991, AGRI-PRACTICE, V12, P19
[4]   Ovaries and Female Phenotype in a Girl with 46,XY Karyotype and Mutations in the CBX2 Gene [J].
Biason-Lauber, Anna ;
Konrad, Daniel ;
Meyer, Monika ;
DeBeaufort, Carine ;
Schoenle, Eugen J. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2009, 84 (05) :658-663
[5]   Detection of genes influencing economic traits in three French dairy cattle breeds [J].
Boichard, D ;
Grohs, C ;
Bourgeois, F ;
Cerqueira, F ;
Faugeras, R ;
Neau, A ;
Rupp, R ;
Amigues, Y ;
Boscher, MY ;
Levéziel, H .
GENETICS SELECTION EVOLUTION, 2003, 35 (01) :77-101
[6]   Genome-wide association studies for feedlot and growth traits in cattle [J].
Bolormaa, S. ;
Hayes, B. J. ;
Savin, K. ;
Hawken, R. ;
Barendse, W. ;
Arthur, P. F. ;
Herd, R. M. ;
Goddard, M. E. .
JOURNAL OF ANIMAL SCIENCE, 2011, 89 (06) :1684-1697
[7]  
Bolze R, 1993, RES EXTENSION PUBL C
[8]   Calving day and age at first calving in Angus heifers [J].
Bormann, J. Minick ;
Wilson, D. E. .
JOURNAL OF ANIMAL SCIENCE, 2010, 88 (06) :1947-1956
[9]   Genetic structure of the European Charolais and Limousin cattle metapopulations using pedigree analyses [J].
Bouquet, A. ;
Venot, E. ;
Laloe, D. ;
Forabosco, F. ;
Fogh, A. ;
Pabiou, T. ;
Moore, K. ;
Eriksson, J. -A. ;
Renand, G. ;
Phocas, F. .
JOURNAL OF ANIMAL SCIENCE, 2011, 89 (06) :1719-1730
[10]  
Broekmans Frank J, 2004, Menopause, V11, P607, DOI 10.1097/01.GME.0000123643.76105.27