Dynamical Belyi maps and arboreal Galois groups

被引:6
作者
Bouw, Irene I. [1 ]
Ejder, Ozlem [2 ]
Karemaker, Valentijn [3 ,4 ]
机构
[1] Ulm Univ, Ulm, Germany
[2] Colorado State Univ, Ft Collins, CO 80523 USA
[3] Univ Utrecht, Utrecht, Netherlands
[4] Stockholm Univ, Stockholm, Sweden
关键词
Primary: 11G32; 12F10; Secondary: 37P05; 37P15; PRIME DIVISORS; DENSITY;
D O I
10.1007/s00229-020-01204-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a large class of so-called dynamical Belyi maps and study the Galois groups of iterates of such maps. From the combinatorial invariants of the maps, we construct a useful presentation of the geometric Galois groups as subgroups of automorphism groups of regular trees, in terms of iterated wreath products. Using results on the reduction of dynamical Belyi maps modulo certain primes, we obtain results on the corresponding arithmetic Galois groups of iterates. These lead to results on the behavior of the arithmetic Galois groups under specialization, with applications to dynamical sequences.
引用
收藏
页码:1 / 34
页数:34
相关论文
共 18 条
[11]  
Liu F, 2008, AM J MATH, V130, P1687
[12]   A census of quadratic post-critically finite rational functions defined over Q [J].
Lukas, David ;
Manes, Michelle ;
Yap, Diane .
LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2014, 17 :314-329
[13]  
ODONI RWK, 1985, J LOND MATH SOC, V32, P1
[14]  
ODONI RWK, 1985, P LOND MATH SOC, V51, P385
[15]  
Pink R., 2013, ARXIV13095804
[16]  
VOLKLEIN H., 1996, Groups as Galois groups
[17]  
WILLIAMSON A, 1973, MATH Z, V130, P159, DOI 10.1007/BF01214258
[18]  
Zvonkin Alexander., Belyi functions: examples, properties, and applications