Enhanced mechanisms of oxygen reduction on Pr0.4Sr0.6Co0.2Fe0.8O3-d impregnated La1-xSrxCo1-yFeyO3-d cathodes for solid oxide fuel cells

被引:5
|
作者
Li, Haizhao [1 ,2 ,3 ]
Wei, Mingrui [2 ,3 ]
Liu, Yihui [2 ,3 ]
Chen, Xiyong [4 ]
Guo, Guanlun [2 ,3 ]
Liu, Fangjie [1 ]
Fan, Chenyang [1 ]
Zhang, Dongju [5 ]
机构
[1] Henan Univ Sci & Technol, Sch Vehicle & Engn, Luoyang 471003, Peoples R China
[2] Wuhan Univ Technol, Hubei Key Lab Adv Technol Automot Components, Wuhan 430070, Peoples R China
[3] Wuhan Univ Technol, Hubei Collaborat Innovat Ctr Automot Components Te, Wuhan 430070, Peoples R China
[4] Minist Educ, Guangxi Key Lab Proc Nonferrous Met & Featured Mat, Key Lab New Proc Technol Nonferrous Met & Mat, Nanning 530004, Peoples R China
[5] Shandong Univ, Sch Chem & Chem Engn, Key Lab Colloid & Interface Chem, Minist Educ, Jinan 250100, Peoples R China
关键词
First principles; LSCF cathode; Oxygen reduction reaction; PSCF modification; Solid oxide fuel cell; LA0.6SR0.4CO0.2FE0.8O3-DELTA CATHODES; PERFORMANCE; PEROVSKITE; INFILTRATION; STABILITY;
D O I
10.1016/j.jallcom.2022.167033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface modification is an effective approach for the improvement of the electrochemical performance of cathodes. Here effects of perovskite-structured Pr0.4Sr0.6Co0.2Fe0.8O3-delta (PSCF) modification are investigated on the electrochemical performance of La1-xSrxCo1-yFeyO3-delta (LSCF) cathodes with experimental and theoretical methods. The formation energies of oxygen vacancy are reduced with PSCF modification and the adsorption energies of oxygen adsorption on PSCF modified LSCF surface are lower than those on the LSCF surface. Also the dissociation barriers of oxygen molecules on the LSCF surface are greatly decreased, indicating that the rate of oxygen reduction reaction is greatly improved and the LSCF surface is activated with PSCF modification. Results of electrochemical impedance spectra tests show that polarization resistance (R-p) of LSCF cathodes decreases with the appropriate amount of PSCF impregnation and reaches the lowest R-p (0.055 omega cm(2)) with about 10 wt% impregnation at 750 ?. Results of electrical conductivity relaxation indicate that the performance improvement of LSCF cathodes mainly results from the increase of oxygen surface exchange property (5.4 x10(-4) and 1.1 x10(-3 )cm s(-1)), which is consistent with the calculation results. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Oxygen diffusivity of La0.6Sr0.4CO0.2Fe0.8O3.δ perovskite oxide
    Liu, Yanwei
    Lu, Zhe
    SUSTAINABLE DEVELOPMENT OF NATURAL RESOURCES, PTS 1-3, 2013, 616-618 : 633 - +
  • [42] In situ sinterable cathode with nanocrystalline La0.6Sr0.4Co0.2Fe0.8O3-δ for solid oxide fuel cells
    Park, Young Min
    Kim, Ju Hee
    Kim, Haekyoung
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (09) : 5617 - 5623
  • [43] La0.6Sr0.4Co0.2Fe0.8O3 as the anode and cathode for intermediate temperature solid oxide fuel cells
    Hartley, A
    Sahibzada, M
    Weston, M
    Metcalfe, IS
    Mantzavinos, D
    CATALYSIS TODAY, 2000, 55 (1-2) : 197 - 204
  • [44] Ln0.4Sr0.6Co0.8Fe0.2O3-δ (Ln = La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells
    Tu, HY
    Takeda, Y
    Imanishi, N
    Yamamoto, O
    SOLID STATE IONICS, 1999, 117 (3-4) : 277 - 281
  • [45] Extended reaction zone of La0.6Sr0.4Co0.2Fe0.8O3 cathode for solid oxide fuel cell
    Lu, Zigui
    Hardy, John
    Templeton, Jared
    Stevenson, Jeffry
    JOURNAL OF POWER SOURCES, 2012, 198 : 90 - 94
  • [46] Enhanced electrochemical redox kinetics of La0.6Sr0.4Co0.2Fe0.8O3 in reversible solid oxide cells
    Li, Ping
    Liu, Fei
    Yang, Beibei
    Wei, Wei
    Ma, Xinyu
    Yan, Fei
    Gan, Tian
    Fu, Dong
    ELECTROCHIMICA ACTA, 2023, 446
  • [47] A-Site Deficient (Pr0.6Sr0.4)1-sFe0.8Co0.2O3-δ Perovskites as Solid Oxide Fuel Cell Cathodes
    Hansen, K. Kammer
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (10) : B1257 - B1260
  • [48] Thermodynamic and electrical properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ and La0.6Sr0.4Co0.2Fe0.8O3-δ for intermediate-temperature solid oxide fuel cells
    Jun, Areum
    Yoo, Seonyoung
    Gwon, Oh-hun
    Shin, Jeeyoung
    Kim, Guntae
    ELECTROCHIMICA ACTA, 2013, 89 : 372 - 376
  • [49] Effect of SO2 Poisoning on the Electrochemical Activity of La0.6Sr0.4Co0.2Fe0.8O3-δ Cathodes of Solid Oxide Fuel Cells
    Wang, Cheng Cheng
    He, Shuai
    Chen, Kongfa
    Rowles, Matthew R.
    Darvish, Shadi
    Zhong, Yu
    Jiang, San Ping
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (06) : F514 - F524
  • [50] Effects of PdO modification on the performance of La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes for solid oxide fuel cells: A first principle study
    Wei, Mingrui
    Li, Haizhao
    Guo, Guanlun
    Liu, Yihui
    Zhang, Dongju
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (36) : 23180 - 23188